A variable step-size multichannel equalization algorithm exploiting sparseness measure for room acoustics
Non-adaptive multichannel equalization (MCEQ) algorithms based on multiple input/output inverse theorem (MINT) is computationally expensive as MINT involves the inversion of a convolution matrix with dimension that is proportional to the length of the acoustic impulse responses. To address this, we...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105918 http://hdl.handle.net/10220/17689 http://dx.doi.org/10.1109/ISCAS.2012.6271879 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Non-adaptive multichannel equalization (MCEQ) algorithms based on multiple input/output inverse theorem (MINT) is computationally expensive as MINT involves the inversion of a convolution matrix with dimension that is proportional to the length of the acoustic impulse responses. To address this, we propose a MINT-based algorithm that estimates inverse filters by minimizing a cost function iteratively. To further enhance the convergence rate, we formulate an algorithm that employs an adaptive step-size that is derived as a function of the sparseness measure. The proposed algorithm is then applied to existing MINT-based equalization algorithms such as A-MINT and the currently proposed MCEQ-based algorithms. |
---|