Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement
The expanded polytetrafluoroethylene (ePTFE) heart valve can serve as a viable option for prosthetic aortic valve. In this study, an ePTFE bi-leaflet valve design for aortic valve replacement (AVR) is presented, and the performance of the proposed valve was assessed numerically and experimentally. T...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105942 http://hdl.handle.net/10220/48806 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-105942 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1059422023-03-04T17:15:53Z Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement Munirah Ismail Zhu, Guangyu Nakao, Masakazu Yuan, Qi Yeo, Joon Hock Pacini, Davide School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Aortic Valve Prosthetics The expanded polytetrafluoroethylene (ePTFE) heart valve can serve as a viable option for prosthetic aortic valve. In this study, an ePTFE bi-leaflet valve design for aortic valve replacement (AVR) is presented, and the performance of the proposed valve was assessed numerically and experimentally. The valve was designed using CAE software. The dynamic behavior of the newly designed bi-leaflet valve under time-varying physiological pressure loading was first investigated by using commercial finite element code. Then, in-vitro tests were performed to validate the simulation and to assess the hemodynamic performance of the proposed design. A tri-leaflet ePTFE valve was tested in-vitro under the same conditions as a reference. The maximum leaflet coaptation area of the bi-leaflet valve during diastole was 216.3 mm2. When fully closed, no leakage gap was observed and the free edges of the molded valve formed S-shaped lines. The maximum Von Mises stress during a full cardiac cycle was 4.20 MPa. The dynamic performance of the bi-leaflet valve was validated by the in-vitro test under physiological aortic pressure pulse. The effective orifice area (EOA), mean pressure gradient, regurgitant volume, leakage volume and energy loss of the proposed valve were 3.14 cm2, 8.74 mmHg, 5.93 ml/beat, 1.55 ml/beat and 98.99 mJ, respectively. This study reports a novel bi-leaflet valve design for AVR. The performance of the proposed valve was numerically and experimentally assessed. Compared with the reference valve, the proposed design exhibited better structural and hemodynamic performances, which improved valve competency. Moreover, the performance of the bi-leaflet design is comparable to commercialized valves available on the market. The results of the present study provide a viable option for the future clinical applications. NMRC (Natl Medical Research Council, S’pore) Published version 2019-06-19T01:04:28Z 2019-12-06T22:01:13Z 2019-06-19T01:04:28Z 2019-12-06T22:01:13Z 2019 Journal Article Zhu, G., Munirah Ismail, Nakao, M., Yuan, Q., & Yeo, J. H. (2019). Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement. PLOS ONE, 14(1), e0210780-. doi:10.1371/journal.pone.0210780 https://hdl.handle.net/10356/105942 http://hdl.handle.net/10220/48806 10.1371/journal.pone.0210780 en PLOS ONE © 2019 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 27 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering Aortic Valve Prosthetics |
spellingShingle |
DRNTU::Engineering::Mechanical engineering Aortic Valve Prosthetics Munirah Ismail Zhu, Guangyu Nakao, Masakazu Yuan, Qi Yeo, Joon Hock Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
description |
The expanded polytetrafluoroethylene (ePTFE) heart valve can serve as a viable option for prosthetic aortic valve. In this study, an ePTFE bi-leaflet valve design for aortic valve replacement (AVR) is presented, and the performance of the proposed valve was assessed numerically and experimentally. The valve was designed using CAE software. The dynamic behavior of the newly designed bi-leaflet valve under time-varying physiological pressure loading was first investigated by using commercial finite element code. Then, in-vitro tests were performed to validate the simulation and to assess the hemodynamic performance of the proposed design. A tri-leaflet ePTFE valve was tested in-vitro under the same conditions as a reference. The maximum leaflet coaptation area of the bi-leaflet valve during diastole was 216.3 mm2. When fully closed, no leakage gap was observed and the free edges of the molded valve formed S-shaped lines. The maximum Von Mises stress during a full cardiac cycle was 4.20 MPa. The dynamic performance of the bi-leaflet valve was validated by the in-vitro test under physiological aortic pressure pulse. The effective orifice area (EOA), mean pressure gradient, regurgitant volume, leakage volume and energy loss of the proposed valve were 3.14 cm2, 8.74 mmHg, 5.93 ml/beat, 1.55 ml/beat and 98.99 mJ, respectively. This study reports a novel bi-leaflet valve design for AVR. The performance of the proposed valve was numerically and experimentally assessed. Compared with the reference valve, the proposed design exhibited better structural and hemodynamic performances, which improved valve competency. Moreover, the performance of the bi-leaflet design is comparable to commercialized valves available on the market. The results of the present study provide a viable option for the future clinical applications. |
author2 |
Pacini, Davide |
author_facet |
Pacini, Davide Munirah Ismail Zhu, Guangyu Nakao, Masakazu Yuan, Qi Yeo, Joon Hock |
format |
Article |
author |
Munirah Ismail Zhu, Guangyu Nakao, Masakazu Yuan, Qi Yeo, Joon Hock |
author_sort |
Munirah Ismail |
title |
Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
title_short |
Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
title_full |
Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
title_fullStr |
Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
title_full_unstemmed |
Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
title_sort |
numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/105942 http://hdl.handle.net/10220/48806 |
_version_ |
1759853767625277440 |