Phase-preserved macroscopic visible-light carpet cloaking beyond two dimensions

Transformation optics, a recent geometrical design strategy of light manipulation with both ray trajectories and optical phase controlled simultaneously, promises an invisibility cloaking device that can render a macroscopic object invisible even to a scientific instrument measuring optical phase. R...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chu, Chia-Wei, Zhai, Xiaomin, Lee, Chih Jie, Wang, Po-Hao, Duan, Yubo, Tsai, Din Ping, Zhang, Baile, Luo, Yuan
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2015
主題:
在線閱讀:https://hdl.handle.net/10356/106026
http://hdl.handle.net/10220/26281
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Transformation optics, a recent geometrical design strategy of light manipulation with both ray trajectories and optical phase controlled simultaneously, promises an invisibility cloaking device that can render a macroscopic object invisible even to a scientific instrument measuring optical phase. Recent “carpet” cloaks have extended their cloaking capability to broadband frequency ranges and macroscopic scales, but they only demonstrated the recovery of ray trajectories after passing through the cloaks, while whether the optical phase would reveal their existence still remains unverified. In this paper, a phase-preserved macroscopic visible-light carpet cloak is demonstrated in a geometrical construction beyond two dimensions. As an extension of previous two-dimensional (2D) macroscopic carpet cloaks, this almost-three-dimensional carpet cloak exhibits three-dimensional (3D) invisibility for illumination near its center (i.e. with a limited field of view), and its ideal wide-angle invisibility performance is preserved in multiple 2D planes intersecting in the 3D space. Optical path length is measured with a broadband pulsed-laser interferometer, which provides unique experimental evidence on the geometrical nature of transformation optics.