On polynomial pairs of integers

The reversal of a positive integer A is the number obtained by reading A backwards in its decimal representation. A pair (A, B) of positive integers is said to be palindromic if the reversal of the product A × B is equal to the product of the reversals of A and B. A pair (A, B) of positive integers...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ezerman, Martianus Frederic, Meyer, Bertrand, Solé, Patrick
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/106039
http://hdl.handle.net/10220/26278
https://cs.uwaterloo.ca/journals/JIS/VOL18/Ezerman/eze3.html
https://cs.uwaterloo.ca/journals/JIS/VOL18/Ezerman/eze3.html
https://cs.uwaterloo.ca/journals/JIS/VOL18/Ezerman/eze3.html
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:The reversal of a positive integer A is the number obtained by reading A backwards in its decimal representation. A pair (A, B) of positive integers is said to be palindromic if the reversal of the product A × B is equal to the product of the reversals of A and B. A pair (A, B) of positive integers is said to be polynomial if the product A × B can be performed without carry. In this paper, we use polynomial pairs in constructing and in studying the properties of palindromic pairs. It is shown that polynomial pairs are always palindromic. It is further conjectured that, provided that neither A nor B is itself a palindrome, all palindromic pairs are polynomial. A connection is made with classical topics in recreational mathematics such as reversal multiplication, palindromic squares, and repunits.