Positive solutions of complementary lidstone boundary value problems

We consider the following complementary Lidstone boundary value problem (−1)my (2m+1)(t) = F(t, y(t), y′ (t)), t ∈ [0, 1] y(0) = 0, y(2k−1)(0) = y (2k−1)(1) = 0, 1 ≤ k ≤ m. The nonlinear term F depends on y ′ and this derivative dependence is seldom investigated in the literature. Using a va...

Full description

Saved in:
Bibliographic Details
Main Authors: Agarwal, Ravi P., Wong, Patricia Jia Yiing
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/106056
http://hdl.handle.net/10220/23969
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We consider the following complementary Lidstone boundary value problem (−1)my (2m+1)(t) = F(t, y(t), y′ (t)), t ∈ [0, 1] y(0) = 0, y(2k−1)(0) = y (2k−1)(1) = 0, 1 ≤ k ≤ m. The nonlinear term F depends on y ′ and this derivative dependence is seldom investigated in the literature. Using a variety of fixed point theorems, we establish the existence of one or more positive solutions for the boundary value problem. Examples are also included to illustrate the results obtained.