A classification of unimodular lattice wiretap codes in small dimensions
Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characteri...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106081 http://hdl.handle.net/10220/16616 http://dx.doi.org/10.1109/TIT.2013.2246814 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characterize the confusion that a chosen lattice can cause at the eavesdropper: the higher the secrecy gain of the lattice, the more confusion. In this paper, secrecy gains of extremal odd unimodular lattices as well as unimodular lattices in dimension n, 16 ≤ n ≤ 23, are computed, covering the four extremal odd unimodular lattices and all the 111 nonextremal unimodular lattices (both odd and even), providing thus a classification of the best wiretap lattice codes coming from unimodular lattices in dimension n, 8 <; n ≤ 23. Finally, to permit lattice encoding via Construction A, the corresponding error correction codes of the best lattices are determined. |
---|