Cobalt dopant with deep redox potential for organometal halide hybrid solar cells
In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD). This dopant...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106183 http://hdl.handle.net/10220/19633 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-106183 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1061832021-01-05T07:48:56Z Cobalt dopant with deep redox potential for organometal halide hybrid solar cells Mhaisalkar, Subodh Gautam Grimsdale, Andrew C. Li, Hairong Koh, Teck Ming Dharani, Sabba Prabhakar, Rajiv Ramanujam Mathews, Nripan School of Materials Science & Engineering Energy Research Institute @ NTU (ERI@N) DRNTU::Science::Chemistry::Physical chemistry In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all cobalt-based dopants used in solar cell applications, allowing it to dope a wide range of hole-conductors. We demonstrate the tuning of redox potential of the Co dopant by incorporating pyrimidine moiety in the ligand. We characterize the optical and electrochemical properties of the newly synthesized dopant and show impressive spiro-to-spiro+ conversion. Lastly, we fabricate high efficiency perovskite-based solar cells using MY11 as dopant for molecular hole-conductor, spiro-OMeTAD, to reveal the impact of this dopant in photovoltaic performance. An overall power conversion efficiency of 12 % is achieved using MY11 as p-type dopant to spiro-OMeTAD. 2014-06-10T07:28:54Z 2019-12-06T22:05:54Z 2014-06-10T07:28:54Z 2019-12-06T22:05:54Z 2014 2014 Journal Article Koh, T. M., Dharani, S., Li, H., Prabhakar, R. R., Mathews, N., Grimsdale, A. C., et al. (2014). Cobalt Dopant with Deep Redox Potential for Organometal Halide Hybrid Solar Cells. ChemSusChem, 7(7), 1909–1914. 1864-5631 https://hdl.handle.net/10356/106183 http://hdl.handle.net/10220/19633 10.1002/cssc.201400081 en ChemSusChem © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Chemistry::Physical chemistry |
spellingShingle |
DRNTU::Science::Chemistry::Physical chemistry Mhaisalkar, Subodh Gautam Grimsdale, Andrew C. Li, Hairong Koh, Teck Ming Dharani, Sabba Prabhakar, Rajiv Ramanujam Mathews, Nripan Cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
description |
In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all cobalt-based dopants used in solar cell applications, allowing it to dope a wide range of hole-conductors. We demonstrate the tuning of redox potential of the Co dopant by incorporating pyrimidine moiety in the ligand. We characterize the optical and electrochemical properties of the newly synthesized dopant and show impressive spiro-to-spiro+ conversion. Lastly, we fabricate high efficiency perovskite-based solar cells using MY11 as dopant for molecular hole-conductor, spiro-OMeTAD, to reveal the impact of this dopant in photovoltaic performance. An overall power conversion efficiency of 12 % is achieved using MY11 as p-type dopant to spiro-OMeTAD. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Mhaisalkar, Subodh Gautam Grimsdale, Andrew C. Li, Hairong Koh, Teck Ming Dharani, Sabba Prabhakar, Rajiv Ramanujam Mathews, Nripan |
format |
Article |
author |
Mhaisalkar, Subodh Gautam Grimsdale, Andrew C. Li, Hairong Koh, Teck Ming Dharani, Sabba Prabhakar, Rajiv Ramanujam Mathews, Nripan |
author_sort |
Mhaisalkar, Subodh Gautam |
title |
Cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
title_short |
Cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
title_full |
Cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
title_fullStr |
Cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
title_full_unstemmed |
Cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
title_sort |
cobalt dopant with deep redox potential for organometal halide hybrid solar cells |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/106183 http://hdl.handle.net/10220/19633 |
_version_ |
1688665336228872192 |