Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries
A high rate and high performance Li3V2(PO4)3 cathode was prepared by applying a carbon coating and Al substitution using the conventional solid-state approach. X-Ray diffraction was used to observe the structural properties of the synthesized powders. The presence of the carbon coating was confirmed...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106209 http://hdl.handle.net/10220/8185 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A high rate and high performance Li3V2(PO4)3 cathode was prepared by applying a carbon coating and Al substitution using the conventional solid-state approach. X-Ray diffraction was used to observe the structural properties of the synthesized powders. The presence of the carbon coating was confirmed by HR-TEM and reflected well with the Raman analysis. The Li/C-Li3V1.98Al0.02(PO4)3 cell displayed a discharge capacity of 182 mA h g−1 between 3 and 4.8 V vs. Li at a current density of 0.1 mA cm−1, which is 20 mA h g−1 higher than that of the native compound. The capacity retention was found to be 84 and 74% after 40 and 100 cycles, respectively. The C-Li3V1.98Al0.02(PO4)3 powders demonstrated excellent rate performance at 20 C with a discharge capacity of 120 mA h g−1 over 100 cycles. The elevated temperature performance was also evaluated and found to be similar to that under room temperature conditions. |
---|