Full coverage of optimal phasor measurement unit placement solutions in distribution systems using integer linear programming
Integer linear programming (ILP) has been widely applied to solve the optimal phasor measurement unit (PMU) placement (OPP) problem for its computational efficiency. Using ILP, a placement with minimum number of Phasor Measurement Units (PMUs) and maximum measurement redundancy can be obtained while...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106250 http://hdl.handle.net/10220/48912 http://dx.doi.org/10.3390/en12081552 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Integer linear programming (ILP) has been widely applied to solve the optimal phasor measurement unit (PMU) placement (OPP) problem for its computational efficiency. Using ILP, a placement with minimum number of Phasor Measurement Units (PMUs) and maximum measurement redundancy can be obtained while ensuring system observability. Author response: please delete this above sentence. However, the existing ILP-based OPP methods does not guarantee full coverage of solutions to the optimization problem, which may sequentially results in suboptimal supervision of the system. In this paper, a hybrid ILP-based method is proposed to cover all solutions to the OPP problem without any omission. Comparing with the existing exhaustive searching methods, the proposed method is more computationally efficient, which makes finding all solutions in a large system a more feasible problem. |
---|