A kernel-ensemble bagging support vector machine
This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/106266 http://hdl.handle.net/10220/16622 http://dx.doi.org/10.1109/ISDA.2012.6416648 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers. |
---|