A kernel-ensemble bagging support vector machine

This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance...

全面介紹

Saved in:
書目詳細資料
Main Authors: Suganthan, P. N., Ye, Ren
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/106266
http://hdl.handle.net/10220/16622
http://dx.doi.org/10.1109/ISDA.2012.6416648
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers.