Enhanced connection adaption strategy with partition approach
The control of dynamical networks is a topic of great value with applications across multiple disciplines. An efficient control scheme based on the connection adaption strategy (CAS) has been proposed by Zhou et al. who revealed that the controllability is restricted by the topological distance betw...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106297 http://hdl.handle.net/10220/48881 http://dx.doi.org/10.1109/ACCESS.2019.2903208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The control of dynamical networks is a topic of great value with applications across multiple disciplines. An efficient control scheme based on the connection adaption strategy (CAS) has been proposed by Zhou et al. who revealed that the controllability is restricted by the topological distance between the units and the controller. In this paper, based on the framework of the CAS, we propose a distributed control scheme by partitioning the network space into grids. With this partition approach, the distance between units and controller could be much reduced, resulting in a significant enhancement of the controllability of the dynamical networks. In addition, we introduce an effective length to measure the time-varying topological distance between the mobile units and the controller. The introduced effective length could well reflect the controllability of the dynamical networks with mobile units. |
---|