Realization of an acoustic third-order topological insulator
The recent discovery of higher-order topological insulators (TIs) has opened new possibilities in the search for novel topological materials and metamaterials. Second-order TIs have been implemented in two-dimensional (2D) systems exhibiting topological “corner states,” as well as three-dimensional...
Saved in:
Main Authors: | , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/106320 http://hdl.handle.net/10220/49638 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | The recent discovery of higher-order topological insulators (TIs) has opened new possibilities in the search for novel topological materials and metamaterials. Second-order TIs have been implemented in two-dimensional (2D) systems exhibiting topological “corner states,” as well as three-dimensional (3D) systems having one dimensional (1D) topological “hinge states.” Third-order TIs, which have topological states three dimensions lower than the bulk (which must thus be 3D or higher), have not yet been reported. Here, we describe the realization of a third-order TI in an anisotropic diamond-lattice acoustic metamaterial. The bulk acoustic band structure has nontrivial topology characterized by quantized Wannier centers. By direct acoustic measurement, we observe corner states at two corners of a rhombohedronlike structure, as predicted by the quantized Wannier centers. This work extends topological corner states from 2D to 3D, and may find applications in novel acoustic devices. |
---|