Plasmonic toroidal excitation with engineering metamaterials
Natural toroidal molecules, such as biomolecules and proteins, possess toroidal dipole moments that are hard to be detected, which leads to extensive studies of artificial toroidal materials. Recently, toroidal metamaterials have been widely investigated to enhance toroidal dipole moments while the...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/106349 http://hdl.handle.net/10220/49587 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Natural toroidal molecules, such as biomolecules and proteins, possess toroidal dipole moments that are hard to be detected, which leads to extensive studies of artificial toroidal materials. Recently, toroidal metamaterials have been widely investigated to enhance toroidal dipole moments while the other multipoles are eliminated due to the spacial symmetry. In this talk, we will show several cases on the plasmonic toroidal excitation by engineering the near-field coupling between metamaterials, including their promising applications. In addition, a novel design for a toroidal metamaterial with engineering anapole mode will also be discussed. |
---|