Coaxial Fe3O4/CuO hybrid nanowires as ultra fast charge/discharge lithium-ion battery anodes

We report the facile, template free electrochemical fabrication of hierarchical Fe3O4/CuO hybrid wires, grown directly on a copper substrate. The electrodes are produced by the electrochemical deposition of Fe3O4 on CuO nanoneedle arrays, fabricated by anodization. The Fe3O4/CuO hybrid anodes displa...

Full description

Saved in:
Bibliographic Details
Main Authors: Saadat, Somaye, Zhu, Jixin, Sim, Daohao, Hng, Huey Hoon, Yazami, Rachid, Yan, Qingyu
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/106359
http://hdl.handle.net/10220/17452
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report the facile, template free electrochemical fabrication of hierarchical Fe3O4/CuO hybrid wires, grown directly on a copper substrate. The electrodes are produced by the electrochemical deposition of Fe3O4 on CuO nanoneedle arrays, fabricated by anodization. The Fe3O4/CuO hybrid anodes displayed ultrafast charging/discharging properties and high rate capabilities, superior to those of their individual building blocks Fe3O4 and CuO. For example, at a current density of 820 mA g−1, the Fe3O4/CuO hybrid wires delivered high reversible specific capacity, good cycling stability (delivering 953 mA h g−1 discharge capacity with 98.7% Coulombic efficiency after 100 cycles) and excellent rate capability (319 mA h g−1 at 8200 mA g−1). The excellent performance of the Fe3O4/CuO hybrids comes from the intelligent integration of the two compatible components into unique hierarchical architectures with a high specific capacity, with one-dimensional CuO nanoneedle arrays electrochemically coated with mesoporous Fe3O4 nanocubes.