New directions : potential climate and productivity benefits from CO2 capture in commercial buildings
Primarily because of humanity’s heavy reliance on fossil fuels, ambient CO2 levels have risen from 280 ppm in preindustrial times to 400 ppm today, and levels continue to rise by a few ppm per year (Tans and Keeling, 2014). Progress toward stabilizing atmospheric CO2 levels can be achieved not only...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106371 http://hdl.handle.net/10220/26372 http://dx.doi.org/10.1016/j.atmosenv.2015.01.004 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Primarily because of humanity’s heavy reliance on fossil fuels, ambient CO2 levels have risen from 280 ppm in preindustrial times to 400 ppm today, and levels continue to rise by a few ppm per year (Tans and Keeling, 2014). Progress toward stabilizing atmospheric CO2 levels can be achieved not only through reducing emissions but also through the engineering of new or enhanced sinks of atmospheric CO2. Research and private sector initiatives on removing CO2 from ambient air (Boot-Handford et al., 2014) lead us to consider this challenge in the context of a well-known indoor air quality concern: elevated CO2 concentrations in occupied buildings. |
---|