Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers

Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of param...

Full description

Saved in:
Bibliographic Details
Main Authors: Guerette, Paul A., Z. Tay, Gavin, Hoon, Shawn, Loke, Jun Jie, Hermawan, Arif F., Schmitt, Clemens N. Z., Harrington, Matthew J., Masic, Admir, Karunaratne, Angelo, Gupta, Himadri S., Tan, Koh Siang, Schwaighofer, Andreas, Nowak, Christoph, Miserez, Ali
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/106496
http://hdl.handle.net/10220/24436
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-106496
record_format dspace
spelling sg-ntu-dr.10356-1064962021-01-08T08:16:44Z Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers Guerette, Paul A. Z. Tay, Gavin Hoon, Shawn Loke, Jun Jie Hermawan, Arif F. Schmitt, Clemens N. Z. Harrington, Matthew J. Masic, Admir Karunaratne, Angelo Gupta, Himadri S. Tan, Koh Siang Schwaighofer, Andreas Nowak, Christoph Miserez, Ali School of Materials Science & Engineering School of Biological Sciences Energy Research Institute @ NTU (ERI@N) DRNTU::Engineering::Materials::Biomaterials Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of parameters for creating precisely tuned biomimetic materials. We investigated the molecular design and structural hierarchy of elastomeric egg capsules from the marine snail Pugilina cochlidium (family Melongenidae) and compared these data with all available published studies in order to infer the structure–property relationships of the egg case from the molecular to the macroscopic scale. While mechanical similarities had previously been observed for two other marine melongenid snails, Busycotypus canaliculatus and Busycon carica, B. canaliculatus was the only species for which detailed molecular and nanostructural data were available. Egg capsules from P. cochlidium were found to exhibit mechanical properties and shock absorbing potential that was similar to B. canaliculatus. The two species also displayed similarity in hierarchical fibril bundling and a sub-micron staggering of 100–105 nm within filaments, as shown by atomic force microscopy and small angle X-ray diffraction. In situ Raman micro spectroscopy indicated that P. cochlidium egg cases undergo a stress-induced coiled-coil to extended β-strand structural transformation that is very similar to that of B. canaliculatus. These observations supported the view that these structural and hierarchical elements are essential for egg case function. Comparative analysis of the primary amino acid sequences and structural predictions for all known egg case proteins suggested that while the proteins all contain sequences prone to adopt α-helical structures, the predicted location of coiled-coil domains and stutter perturbations varied within and between species. Despite these differences, mixtures of denatured native egg case proteins readily re-folded in citrate–phosphate assembly buffer into α-helix rich, coiled-coil based oligomers, as determined by attenuated total reflection Fourier transform infrared spectroscopy, circular dichroism and MALDI-TOF. It is concluded that both conserved and divergent designs in marine snail egg cases offer inspiration for the engineering of biomimetic elastomeric materials with a unique capability for mechanical energy absorption. 2014-12-11T06:54:45Z 2019-12-06T22:13:01Z 2014-12-11T06:54:45Z 2019-12-06T22:13:01Z 2014 2014 Journal Article Guerette, P. A., Tay, G. Z., Hoon, S., Loke, J. J., Hermawan, A. F., Schmitt, C. N. Z., et al. (2014). Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers. Biomaterials science, 2(5), 710-722. 2047-4830 https://hdl.handle.net/10356/106496 http://hdl.handle.net/10220/24436 10.1039/c3bm60264h en Biomaterials science © 2014 The Royal Society of Chemistry.
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Biomaterials
spellingShingle DRNTU::Engineering::Materials::Biomaterials
Guerette, Paul A.
Z. Tay, Gavin
Hoon, Shawn
Loke, Jun Jie
Hermawan, Arif F.
Schmitt, Clemens N. Z.
Harrington, Matthew J.
Masic, Admir
Karunaratne, Angelo
Gupta, Himadri S.
Tan, Koh Siang
Schwaighofer, Andreas
Nowak, Christoph
Miserez, Ali
Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
description Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of parameters for creating precisely tuned biomimetic materials. We investigated the molecular design and structural hierarchy of elastomeric egg capsules from the marine snail Pugilina cochlidium (family Melongenidae) and compared these data with all available published studies in order to infer the structure–property relationships of the egg case from the molecular to the macroscopic scale. While mechanical similarities had previously been observed for two other marine melongenid snails, Busycotypus canaliculatus and Busycon carica, B. canaliculatus was the only species for which detailed molecular and nanostructural data were available. Egg capsules from P. cochlidium were found to exhibit mechanical properties and shock absorbing potential that was similar to B. canaliculatus. The two species also displayed similarity in hierarchical fibril bundling and a sub-micron staggering of 100–105 nm within filaments, as shown by atomic force microscopy and small angle X-ray diffraction. In situ Raman micro spectroscopy indicated that P. cochlidium egg cases undergo a stress-induced coiled-coil to extended β-strand structural transformation that is very similar to that of B. canaliculatus. These observations supported the view that these structural and hierarchical elements are essential for egg case function. Comparative analysis of the primary amino acid sequences and structural predictions for all known egg case proteins suggested that while the proteins all contain sequences prone to adopt α-helical structures, the predicted location of coiled-coil domains and stutter perturbations varied within and between species. Despite these differences, mixtures of denatured native egg case proteins readily re-folded in citrate–phosphate assembly buffer into α-helix rich, coiled-coil based oligomers, as determined by attenuated total reflection Fourier transform infrared spectroscopy, circular dichroism and MALDI-TOF. It is concluded that both conserved and divergent designs in marine snail egg cases offer inspiration for the engineering of biomimetic elastomeric materials with a unique capability for mechanical energy absorption.
author2 School of Materials Science & Engineering
author_facet School of Materials Science & Engineering
Guerette, Paul A.
Z. Tay, Gavin
Hoon, Shawn
Loke, Jun Jie
Hermawan, Arif F.
Schmitt, Clemens N. Z.
Harrington, Matthew J.
Masic, Admir
Karunaratne, Angelo
Gupta, Himadri S.
Tan, Koh Siang
Schwaighofer, Andreas
Nowak, Christoph
Miserez, Ali
format Article
author Guerette, Paul A.
Z. Tay, Gavin
Hoon, Shawn
Loke, Jun Jie
Hermawan, Arif F.
Schmitt, Clemens N. Z.
Harrington, Matthew J.
Masic, Admir
Karunaratne, Angelo
Gupta, Himadri S.
Tan, Koh Siang
Schwaighofer, Andreas
Nowak, Christoph
Miserez, Ali
author_sort Guerette, Paul A.
title Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
title_short Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
title_full Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
title_fullStr Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
title_full_unstemmed Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
title_sort integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
publishDate 2014
url https://hdl.handle.net/10356/106496
http://hdl.handle.net/10220/24436
_version_ 1690658457120669696