Germanium nanowires-based carbon composite as anodes for lithium-ion batteries

Lithium-ion batteries have been actively researched in recent years due to it being one of the most promising energy storage systems. Herein, we report a novel approach where germanium nanowires (Ge NW) are grown in gold-seeded porous carbon via the solution–liquid–solid mechanism, and the correspon...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan, Qingyu, Tan, Li Ping, Lu, Ziyang, Tan, Huiteng, Zhu, Jixin, Rui, Xianhong, Hng, Huey Hoon
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/106513
http://hdl.handle.net/10220/11364
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Lithium-ion batteries have been actively researched in recent years due to it being one of the most promising energy storage systems. Herein, we report a novel approach where germanium nanowires (Ge NW) are grown in gold-seeded porous carbon via the solution–liquid–solid mechanism, and the corresponding improvement observed in terms of the specific capacity of this porous carbon–germanium nanowires (PC–Ge NW) composite anode. At a current density of 160 mAg−1 and voltage window of 0.001–1.5 V, a specific capacity of 789 mAhg−1 during the 50th cycle for PC–Ge NW is achieved as compared to 624 mAhg−1 during the 50th cycle for pure Ge NW. Even though the content of the Ge is only 53.5 weight percent in the PC–Ge NW composite, it yields a better stability and higher specific capacity, indicating a synergistic effect between porous carbon and Ge nanowires. There is also potential cost savings since the use of a lower amount of Ge can bring about good cycling properties.