Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries

We first report the exceptional cycleability of SnO2 anodes by atomic layer deposition (ALD) over directly on stainless steel substrates without any capacity fade for 500 cycles. Perfect choice of cycling potential (5–800 mV vs. Li) and synthesis condition yielded such performance with reversible ca...

Full description

Saved in:
Bibliographic Details
Main Authors: Aravindan, Vanchiappan, Jinesh, K. B., Prabhakar, Rajiv Ramanujam, Kale, Vinayak S., Madhavi, Srinivasan
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/106517
http://hdl.handle.net/10220/17427
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We first report the exceptional cycleability of SnO2 anodes by atomic layer deposition (ALD) over directly on stainless steel substrates without any capacity fade for 500 cycles. Perfect choice of cycling potential (5–800 mV vs. Li) and synthesis condition yielded such performance with reversible capacity of 646 mAh g−1 at current density of 5 μA cm−2. Further, SnO2 undergoes the conversion reaction along with alloying reaction enables higher capacity than alloying reaction, however, experiencing severe capacity fade during cycling. Obtained results on SnO2 anodes by ALD technique certainly influence the impact on the development of solid-state, thin film and 3D Li-ion batteries.