Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques
The purpose of this study was to achieve a sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium (ASP) from electrospun polycaprolactone (PCL) scaffolds, so as to promote the osteogenic differentiation of stem cells for bone tissue engineering (TE). ASP was loaded and electrospun to...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106624 http://hdl.handle.net/10220/25044 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-106624 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1066242020-09-21T11:35:04Z Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques Zhao, Xinxin Lui, Siang Yuan Toh, Pei Wen Jessica Loo, Say Chye Joachim School of Materials Science & Engineering Singapore Centre for Environmental Life Sciences Engineering DRNTU::Engineering::Materials::Ecomaterials The purpose of this study was to achieve a sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium (ASP) from electrospun polycaprolactone (PCL) scaffolds, so as to promote the osteogenic differentiation of stem cells for bone tissue engineering (TE). ASP was loaded and electrospun together with PCL via three electrospinning techniques, i.e., coaxial, emulsion, and blend electrospinning. For blend electrospinning, binary solvent systems of dichloromethane–methanol (DCM–MeOH) and dichloromethane–dimethylformamide (DCM–DMF) were used to achieve the desired ASP release through the effect of solvent polarity and volatility. The scaffold prepared via a blend electrospinning technique with a binary solvent system of DCM–MeOH at a 7:3 ratio demonstrated a desirable, sustained ASP release profile for as long as two weeks, with minimal burst release. However, an undesirable burst release (~100%) was observed within the first 24 h for scaffolds prepared by coaxial electrospinning. Scaffolds prepared by emulsion electrospinning displayed poorer mechanical properties. Sustained releasing blend electrospun scaffold could be a good potential candidate as an ASP-eluting scaffold for bone tissue engineering. Published version 2015-02-12T08:54:21Z 2019-12-06T22:15:06Z 2015-02-12T08:54:21Z 2019-12-06T22:15:06Z 2014 2014 Journal Article Zhao, X., Lui, Y. S., Toh, P. W. J., & Loo, S. Y. J. (2014). Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques. Materials, 7(11), 7398-7408. 1996-1944 https://hdl.handle.net/10356/106624 http://hdl.handle.net/10220/25044 10.3390/ma7117398 en Materials © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). 11 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Ecomaterials |
spellingShingle |
DRNTU::Engineering::Materials::Ecomaterials Zhao, Xinxin Lui, Siang Yuan Toh, Pei Wen Jessica Loo, Say Chye Joachim Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
description |
The purpose of this study was to achieve a sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium (ASP) from electrospun polycaprolactone (PCL) scaffolds, so as to promote the osteogenic differentiation of stem cells for bone tissue engineering (TE). ASP was loaded and electrospun together with PCL via three electrospinning techniques, i.e., coaxial, emulsion, and blend electrospinning. For blend electrospinning, binary solvent systems of dichloromethane–methanol (DCM–MeOH) and dichloromethane–dimethylformamide (DCM–DMF) were used to achieve the desired ASP release through the effect of solvent polarity and volatility. The scaffold prepared via a blend electrospinning technique with a binary solvent system of DCM–MeOH at a 7:3 ratio demonstrated a desirable, sustained ASP release profile for as long as two weeks, with minimal burst release. However, an undesirable burst release (~100%) was observed within the first 24 h for scaffolds prepared by coaxial electrospinning. Scaffolds prepared by emulsion electrospinning displayed poorer mechanical properties. Sustained releasing blend electrospun scaffold could be a good potential candidate as an ASP-eluting scaffold for bone tissue engineering. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Zhao, Xinxin Lui, Siang Yuan Toh, Pei Wen Jessica Loo, Say Chye Joachim |
format |
Article |
author |
Zhao, Xinxin Lui, Siang Yuan Toh, Pei Wen Jessica Loo, Say Chye Joachim |
author_sort |
Zhao, Xinxin |
title |
Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
title_short |
Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
title_full |
Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
title_fullStr |
Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
title_full_unstemmed |
Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
title_sort |
sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold : a study across blend, coaxial, and emulsion electrospinning techniques |
publishDate |
2015 |
url |
https://hdl.handle.net/10356/106624 http://hdl.handle.net/10220/25044 |
_version_ |
1681058612220264448 |