Quantitative profiling of the rat heart myoblast secretome reveals differential responses to hypoxia and re-oxygenation stress

Secretion of bioactive mediators regulates cell interactions with the microenvironment in tissue homeostasis and wound healing processes. We assessed the cardiomyocyte secretory response to hypoxia with the aim of identifying key mediators of tissue pathology and repair after ischemic heart attack....

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Xin, Ren, Yan, Sorokin, Vitaly, Poh, Kian Keong, Ho, Hee Hwa, Lee, Chuen Neng, de Kleijn, Dominique, Lim, Sai Kiang, Tam, James P., Sze, Siu Kwan
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/106731
http://hdl.handle.net/10220/25118
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Secretion of bioactive mediators regulates cell interactions with the microenvironment in tissue homeostasis and wound healing processes. We assessed the cardiomyocyte secretory response to hypoxia with the aim of identifying key mediators of tissue pathology and repair after ischemic heart attack. We profiled the secretome of rat H9C2 cardiomyoblast cells subjected to 16h hypoxia followed by 24h re-oxygenation using iTRAQ and label-free quantitative proteomics. A total of 860 and 2007 proteins were identified in the iTRAQ and label-free experiments respectively. Among these proteins, 1363 were identified as being secreted proteins, including mediators of critical cellular functions that were modulated by hypoxia/re-oxygenation stress (SerpinH1, Ppia, Attractin, EMC1, Postn, Thbs1, Timp1, Stip1, Robo2, Fat1). Further analysis indicated that hypoxia is associated with angiogenesis, inflammation, and remodeling of the extracellular matrix (ECM), whereas subsequent re-oxygenation was instead associated with modified secretion of proteins involved in suppression of inflammation, ECM modification, and decreased output of anti-apoptosis proteins. These data indicate that hypoxia and subsequent re-oxygenation modify the cardiomyocyte secretome in order to mitigate cellular injury and promote healing. The identified changes in cardiomyocyte secretome advance our current understanding of cardiac biology in ischemia/reperfusion injury and may lead to the identification of novel prognostic biomarker.