A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion

In this paper, we present a discrete artificial bee colony algorithm to solve the no-idle permutation flowshop scheduling problem with the total tardiness criterion. The no-idle permutation flowshop problem is a variant of the well-known permutation flowshop scheduling problem where idle time is not...

Full description

Saved in:
Bibliographic Details
Main Authors: Tasgetiren, M. Fatih., Pan, Quan-Ke., Suganthan, P. N., Oner, Adalet.
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/106812
http://hdl.handle.net/10220/16643
http://dx.doi.org/10.1016/j.apm.2013.02.011
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper, we present a discrete artificial bee colony algorithm to solve the no-idle permutation flowshop scheduling problem with the total tardiness criterion. The no-idle permutation flowshop problem is a variant of the well-known permutation flowshop scheduling problem where idle time is not allowed on machines. In other words, the start time of processing the first job on a given machine must be delayed in order to satisfy the no-idle constraint. The paper presents the following contributions: First of all, a discrete artificial bee colony algorithm is presented to solve the problem on hand first time in the literature. Secondly, some novel methods of calculating the total tardiness from makespan are introduced for the no-idle permutation flowshop scheduling problem. Finally, the main contribution of the paper is due to the fact that a novel speed-up method for the insertion neighborhood is developed for the total tardiness criterion. The performance of the discrete artificial bee colony algorithm is evaluated against a traditional genetic algorithm. The computational results show its highly competitive performance when compared to the genetic algorithm. Ultimately, we provide the best known solutions for the total tardiness criterion with different due date tightness levels for the first time in the literature for the Taillard’s benchmark suit.