A simple and efficient algorithm for fused lasso signal approximator with convex loss function

We consider the augmented Lagrangian method (ALM) as a solver for the fused lasso signal approximator (FLSA) problem. The ALM is a dual method in which squares of the constraint functions are added as penalties to the Lagrangian. In order to apply this method to FLSA, two types of auxiliary variable...

全面介紹

Saved in:
書目詳細資料
Main Authors: You, Yuan, Lian, Heng, Wang, Lichun
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/107175
http://hdl.handle.net/10220/17942
http://dx.doi.org/10.1007/s00180-012-0373-6
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We consider the augmented Lagrangian method (ALM) as a solver for the fused lasso signal approximator (FLSA) problem. The ALM is a dual method in which squares of the constraint functions are added as penalties to the Lagrangian. In order to apply this method to FLSA, two types of auxiliary variables are introduced to transform the original unconstrained minimization problem into a linearly constrained minimization problem. Each updating in this iterative algorithm consists of just a simple one-dimensional convex programming problem, with closed form solution in many cases. While the existing literature mostly focused on the quadratic loss function, our algorithm can be easily implemented for general convex loss. We also provide some convergence analysis of the algorithm. Finally, the method is illustrated with some simulation datasets.