A simple and efficient algorithm for fused lasso signal approximator with convex loss function
We consider the augmented Lagrangian method (ALM) as a solver for the fused lasso signal approximator (FLSA) problem. The ALM is a dual method in which squares of the constraint functions are added as penalties to the Lagrangian. In order to apply this method to FLSA, two types of auxiliary variable...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/107175 http://hdl.handle.net/10220/17942 http://dx.doi.org/10.1007/s00180-012-0373-6 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | We consider the augmented Lagrangian method (ALM) as a solver for the fused lasso signal approximator (FLSA) problem. The ALM is a dual method in which squares of the constraint functions are added as penalties to the Lagrangian. In order to apply this method to FLSA, two types of auxiliary variables are introduced to transform the original unconstrained minimization problem into a linearly constrained minimization problem. Each updating in this iterative algorithm consists of just a simple one-dimensional convex programming problem, with closed form solution in many cases. While the existing literature mostly focused on the quadratic loss function, our algorithm can be easily implemented for general convex loss. We also provide some convergence analysis of the algorithm. Finally, the method is illustrated with some simulation datasets. |
---|