A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system

In this study, a novel therapeutic cell delivery methodology in the form of hydrogel encapsulating cell-laden microspheres was developed and investigated. As a model cell for cartilage tissue engineering, chondrocytes were successfully encapsulated in gelatin-based microspheres (mostly of diameter 5...

Full description

Saved in:
Bibliographic Details
Main Authors: Leong, Wenyan, Lau, Ting Ting, Wang, Dong-An
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/107254
http://hdl.handle.net/10220/17847
http://dx.doi.org/10.1016/j.actbio.2012.10.047
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this study, a novel therapeutic cell delivery methodology in the form of hydrogel encapsulating cell-laden microspheres was developed and investigated. As a model cell for cartilage tissue engineering, chondrocytes were successfully encapsulated in gelatin-based microspheres (mostly of diameter 50–100 μm, centred at 75–100 μm) with high cell viability during the formation of microspheres via a water-in-oil single emulsion process under a low temperature without any chemical treatment. These cell-laden microspheres were then encapsulated in alginate-based hydrogel constructs. By elevating the temperature to 37 °C, the cell-laden microspheres were completely dissolved within 2 days, resulting in the same number of same-sized spherical cavities in hydrogel bulk, along with which the encapsulated cells were released from the microspheres and suspended inside the cavities to be cultivated for further development. In this cell delivery system, the microspheres played a dual role as both removable cell vehicles and porogens for creation of the intra-hydrogel cavities, in which the delivered cells were provided with both free living spaces and a better permeable environment. This temperature-cured dissolvable gelatin microsphere-based cell carrier (tDGMC) associating with cell-laden hydrogel scaffold was attempted and evaluated through WST-1, quantitative polymerase chain reaction, biochemical assays and various immunohistochemistry and histology stains. The results indicate that tDGMC technology can facilitate the delivery of chondrocytes, as a non-anchorage-dependent therapeutic cell, with significantly greater efficiency.