Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation
Carbon quantum dots (CQDs) coated BiVO4 inverse opal (io-BiVO4) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO4 maximizes photon trapping through slow light effect, while maintaining adequ...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/107391 http://hdl.handle.net/10220/25538 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Carbon quantum dots (CQDs) coated BiVO4 inverse opal (io-BiVO4) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO4 maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO4 to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO4 exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of the pure BiVO4 thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal. |
---|