100 THz broadband optical switching with plasmonic metamaterial
The development of coherent optical networks and processing are catalysing increasing attention as solutions to accelerate the data transfer speed and data processing. Conventional technology in coherent optical networks can perform at the maximum speed of 100 Gb/s. Here we evaluate the effect of pl...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/107482 http://hdl.handle.net/10220/40551 http://www.mrs.org.sg/icmat2015/public.asp?page=home.asp |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-107482 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1074822023-02-28T19:17:38Z 100 THz broadband optical switching with plasmonic metamaterial Nalla, Venkatram Vezzoli, Stefano Valente, João Soci, Cesare Sun, Handong Zheludev, Nikolay School of Physical and Mathematical Sciences International Conference on Materials for Advanced Technologies (ICMAT) (8th:2015:Singapore) Centre for Disruptive Photonic Technologies (CDPT) DRNTU::Science::Physics The development of coherent optical networks and processing are catalysing increasing attention as solutions to accelerate the data transfer speed and data processing. Conventional technology in coherent optical networks can perform at the maximum speed of 100 Gb/s. Here we evaluate the effect of plasmonic finite response time on the coherent perfect absorption process for a plasmonic metamaterial absorber, to achieve 100 Tb/s. All-optical modulation means control of the phase or intensity of one light beam by another. In the coherent perfect absorption scenario, the interference of two counter-propagating coherent beams on a highly absorbing material of sub- wavelength thickness can either lead to nearly total transmission or to nearly total absorption of the incident light, depending on their mutual intensity and phase. We study the coherent modulation of the total energy as a function of the pulse duration, from few hundreds fs down to 6 fs. Our measurements allow us to assess the maximal bandwidth for all-optical control of femtosecond pulses, which is about 100 THz. All optical switching also eliminate the disadvantages of optical–electrical–optical conversion thus opening a road to advances in terabits per second communications for high-performance communications and computing. Our device based on coherent absorption has the advantage of being compact, intrinsically low power (as low as single photons), while demonstrating large modulations (modulation bandwidth ~7:1) and speed exceeding 100 THz has been observed. Finally we also evaluate the effect of nonlinearities on coherent modulation and its spectral dependence. Accepted version 2016-05-20T03:12:26Z 2019-12-06T22:32:08Z 2016-05-20T03:12:26Z 2019-12-06T22:32:08Z 2015 2015 Conference Paper Nalla, V., Vezzoli, S., Valente, J., Soci, C., Handong, S., & Zheludev, N. I. (2015) 100 THz broadband optical switching with plasmonic metamaterial. In, 8th International Conference on Materials for Advanced Technologies (ICMAT 2015). https://hdl.handle.net/10356/107482 http://hdl.handle.net/10220/40551 http://www.mrs.org.sg/icmat2015/public.asp?page=home.asp 186008 en © 2015 ICMAT& IUMRS-ICA. This is the author created version of a work that has been peer reviewed and accepted for publication by 8th International Conference on Materials for Advanced Technologies (ICMAT 2015) , ICMAT& IUMRS-ICA. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://www.mrs.org.sg/icmat2015/public.asp?page=home.asp]. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics |
spellingShingle |
DRNTU::Science::Physics Nalla, Venkatram Vezzoli, Stefano Valente, João Soci, Cesare Sun, Handong Zheludev, Nikolay 100 THz broadband optical switching with plasmonic metamaterial |
description |
The development of coherent optical networks and processing are catalysing increasing attention as solutions to accelerate the data transfer speed and data processing. Conventional technology in coherent optical networks can perform at the maximum speed of 100 Gb/s. Here we evaluate the effect of plasmonic finite response time on the coherent perfect absorption process for a plasmonic metamaterial absorber, to achieve 100 Tb/s. All-optical modulation means control of the phase or intensity of one light beam by another. In the coherent perfect absorption scenario, the interference of two counter-propagating coherent beams on a highly absorbing material of sub- wavelength thickness can either lead to nearly total transmission or to nearly total absorption of the incident light, depending on their mutual intensity and phase. We study the coherent modulation of the total energy as a function of the pulse duration, from few hundreds fs down to 6 fs. Our measurements allow us to assess the maximal bandwidth for all-optical control of femtosecond pulses, which is about 100 THz. All optical switching also eliminate the disadvantages of optical–electrical–optical conversion thus opening a road to advances in terabits per second communications for high-performance communications and computing. Our device based on coherent absorption has the advantage of being compact, intrinsically low power (as low as single photons), while demonstrating large modulations (modulation bandwidth ~7:1) and speed exceeding 100 THz has been observed. Finally we also evaluate the effect of nonlinearities on coherent modulation and its spectral dependence. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Nalla, Venkatram Vezzoli, Stefano Valente, João Soci, Cesare Sun, Handong Zheludev, Nikolay |
format |
Conference or Workshop Item |
author |
Nalla, Venkatram Vezzoli, Stefano Valente, João Soci, Cesare Sun, Handong Zheludev, Nikolay |
author_sort |
Nalla, Venkatram |
title |
100 THz broadband optical switching with plasmonic metamaterial |
title_short |
100 THz broadband optical switching with plasmonic metamaterial |
title_full |
100 THz broadband optical switching with plasmonic metamaterial |
title_fullStr |
100 THz broadband optical switching with plasmonic metamaterial |
title_full_unstemmed |
100 THz broadband optical switching with plasmonic metamaterial |
title_sort |
100 thz broadband optical switching with plasmonic metamaterial |
publishDate |
2016 |
url |
https://hdl.handle.net/10356/107482 http://hdl.handle.net/10220/40551 http://www.mrs.org.sg/icmat2015/public.asp?page=home.asp |
_version_ |
1759855887392964608 |