The physics of oscillate boiling

The boiling crisis is widely known as the greatest challenge that limits the working capacity of nucleate boiling. This phenomenon takes place when excessive heat supply creates a vapor film, separating the boiling liquid from the heating substrate. This results in the drop of heat transfer efficie...

Full description

Saved in:
Bibliographic Details
Main Author: Nguyen, Dang Minh
Other Authors: Pica Ciamarra Massimo
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2019
Subjects:
Online Access:https://hdl.handle.net/10356/136548
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-136548
record_format dspace
spelling sg-ntu-dr.10356-1365482023-02-28T23:54:24Z The physics of oscillate boiling Nguyen, Dang Minh Pica Ciamarra Massimo School of Physical and Mathematical Sciences massimo@ntu.edu.sg Engineering::Mechanical engineering::Fluid mechanics Science::Physics::Acoustics The boiling crisis is widely known as the greatest challenge that limits the working capacity of nucleate boiling. This phenomenon takes place when excessive heat supply creates a vapor film, separating the boiling liquid from the heating substrate. This results in the drop of heat transfer efficiency and a significant rise of the device’s temperature. Our work introduces a new regime called oscillate boiling, in which by confining the heat source, the boiling bubble oscillates stably for millions of cycles instead of growing. This mechanism eliminate the possible formation of the vapor film and might be the solution for the boiling crisis. The thesis begins with the first experimental observations where the phenomenon is characterized with high speed imaging, acoustic emission and thermal readings of the heating substrate. We then explain the oscillatory behavior of the boiling bubble with two mechanisms: the liquid jet created by the bubble’s non-spherical collapse, and the thermal kick upon the jet’s impact onto the heating substrate. The explanation is supported with numerical simulation on the bubble dynamics and the flow profile of the surrounding liquid. The following works focus on bringing oscillate boiling towards application, which begins with moving from an laser-based heater to an electrical heater, which allows easier setup, higher energy efficiency and much better controls. Along this way we discover two different mode of oscillate boiling, namely unstable oscillate boiling, associated with low heating power, where the bubble oscillates shortly for only a few milliseconds and starts growing, and stable oscillate boiling, associated with high heating power, where the bubble oscillates stably with a fixed maximum radius. Finally, we present two potential application of oscillate boiling. Firstly, by performing experiments on parabolic flights, we show that unlike nucleate boiling which depends heavily on gravity, oscillate boiling’s functionality remains intact regardless of the gravity condition. Secondly, we study the interaction of two closely-placed oscillate boiling bubbles and discover that depending on their distance and heating power, the two bubbles can either quickly merge, oscillate independently, or most interestingly, synchronize. This results provide the design criteria to number-up the oscillate boiling phenomenon to commercializable scale. Doctor of Philosophy 2019-12-27T06:26:35Z 2019-12-27T06:26:35Z 2019 Thesis-Doctor of Philosophy Nguyen, D. M. (2019). The physics of oscillate boiling. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/136548 10.32657/10356/136548 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Mechanical engineering::Fluid mechanics
Science::Physics::Acoustics
spellingShingle Engineering::Mechanical engineering::Fluid mechanics
Science::Physics::Acoustics
Nguyen, Dang Minh
The physics of oscillate boiling
description The boiling crisis is widely known as the greatest challenge that limits the working capacity of nucleate boiling. This phenomenon takes place when excessive heat supply creates a vapor film, separating the boiling liquid from the heating substrate. This results in the drop of heat transfer efficiency and a significant rise of the device’s temperature. Our work introduces a new regime called oscillate boiling, in which by confining the heat source, the boiling bubble oscillates stably for millions of cycles instead of growing. This mechanism eliminate the possible formation of the vapor film and might be the solution for the boiling crisis. The thesis begins with the first experimental observations where the phenomenon is characterized with high speed imaging, acoustic emission and thermal readings of the heating substrate. We then explain the oscillatory behavior of the boiling bubble with two mechanisms: the liquid jet created by the bubble’s non-spherical collapse, and the thermal kick upon the jet’s impact onto the heating substrate. The explanation is supported with numerical simulation on the bubble dynamics and the flow profile of the surrounding liquid. The following works focus on bringing oscillate boiling towards application, which begins with moving from an laser-based heater to an electrical heater, which allows easier setup, higher energy efficiency and much better controls. Along this way we discover two different mode of oscillate boiling, namely unstable oscillate boiling, associated with low heating power, where the bubble oscillates shortly for only a few milliseconds and starts growing, and stable oscillate boiling, associated with high heating power, where the bubble oscillates stably with a fixed maximum radius. Finally, we present two potential application of oscillate boiling. Firstly, by performing experiments on parabolic flights, we show that unlike nucleate boiling which depends heavily on gravity, oscillate boiling’s functionality remains intact regardless of the gravity condition. Secondly, we study the interaction of two closely-placed oscillate boiling bubbles and discover that depending on their distance and heating power, the two bubbles can either quickly merge, oscillate independently, or most interestingly, synchronize. This results provide the design criteria to number-up the oscillate boiling phenomenon to commercializable scale.
author2 Pica Ciamarra Massimo
author_facet Pica Ciamarra Massimo
Nguyen, Dang Minh
format Thesis-Doctor of Philosophy
author Nguyen, Dang Minh
author_sort Nguyen, Dang Minh
title The physics of oscillate boiling
title_short The physics of oscillate boiling
title_full The physics of oscillate boiling
title_fullStr The physics of oscillate boiling
title_full_unstemmed The physics of oscillate boiling
title_sort physics of oscillate boiling
publisher Nanyang Technological University
publishDate 2019
url https://hdl.handle.net/10356/136548
_version_ 1759857265723047936