Knowledge-enriched transformer for emotion detection in textual conversations

Messages in human conversations inherently convey emotions. The task of detecting emotions in textual conversations leads to a wide range of applications such as opinion mining in social networks. However, enabling machines to analyze emotions in conversations is challenging, partly because humans o...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhong, Peixiang, Wang, Di, Miao, Chunyan
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/136622
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Messages in human conversations inherently convey emotions. The task of detecting emotions in textual conversations leads to a wide range of applications such as opinion mining in social networks. However, enabling machines to analyze emotions in conversations is challenging, partly because humans often rely on the context and commonsense knowledge to express emotions. In this paper, we address these challenges by proposing a Knowledge-Enriched Transformer (KET), where contextual utterances are interpreted using hierarchical self-attention and external commonsense knowledge is dynamically leveraged using a context-aware affective graph attention mechanism. Experiments on multiple textual conversation datasets demonstrate that both context and commonsense knowledge are consistently beneficial to the emotion detection performance. In addition, the experimental results show that our KET model outperforms the state-of-the-art models on most of the tested datasets in F1 score.