A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching
Superhydrophobic silk fabrics were prepared using an environmentally friendly enzyme-etching approach, followed by the modification with methyltrichlorosilane (MTCS) via a simple thermal chemical vapor deposition (CVD) process at 70 °C. The effects of the concentration, treatment time and temperatur...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/136720 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Superhydrophobic silk fabrics were prepared using an environmentally friendly enzyme-etching approach, followed by the modification with methyltrichlorosilane (MTCS) via a simple thermal chemical vapor deposition (CVD) process at 70 °C. The effects of the concentration, treatment time and temperature of enzyme on the etched surface properties were discussed. The composite superhydrophobic silk fabrics demonstrated excellent self-cleaning ability, relatively unscathed effecting their intrinsic properties such as the luster, softness, color and style of the fabrics. Furthermore, these treated fabrics demonstrated excellent mechanical durability after silane-treatment as evidenced by the cyclic abrasion and laundering tests. The composite superhydrophobic cotton fabrics have also demonstrated a high efficiency in oil-water separation. The facile technology via enzymatic hydrolysis to etch the substrate possesses extensive potential applications on various other cellulose-based substrates. |
---|