The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants

Prion protein (PrP) aggregation arises from the misfolding of the native cellular PrP (PrPC) and is a key pathophysiologic event in fatal neurodegenerative prion diseases. To elucidate the mechanism of conversion of PrPC into toxic PrPSc, homogeneous PrP constructs carrying a glycosylphosphatidylino...

Full description

Saved in:
Bibliographic Details
Main Author: Hackl, Stefanie
Other Authors: Cho Nam-Joon
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/136871
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-136871
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Chemical engineering::Biochemical engineering
spellingShingle Engineering::Chemical engineering::Biochemical engineering
Hackl, Stefanie
The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants
description Prion protein (PrP) aggregation arises from the misfolding of the native cellular PrP (PrPC) and is a key pathophysiologic event in fatal neurodegenerative prion diseases. To elucidate the mechanism of conversion of PrPC into toxic PrPSc, homogeneous PrP constructs carrying a glycosylphosphatidylinositol (GPI) anchor mimic served as tools to directly observe PrP at the cellular membrane, the initial site of prion infection and PrP misfolding. The posttranslational modifications (PTMs) of PrP, especially the GPI anchor, have been shown to be crucially involved in PrPSc formation. To this end, fluorescently labeled, folded PrP variants equipped with GPI anchor mimicking peptides were generated via a semisynthesis approach. Secondary structures of the resulting PrP constructs were assessed by circular dichroism (CD). All PrP variants exhibited typical far-UV CD spectra of predominantly α-helical proteins, in agreement with the structure of native PrPC. In vitro aggregation, monitored by thioflavin T (ThT) fluorescence and proteinase K (PK) resistance, illustrated their use in understanding key steps of PrP pathology. To study the PrP membrane interaction, we monitored PrP association on artificial supported bilayers in quartz crystal microbalance-dissipation (QCM-D) experiments in real time, varying pH, lipid and salt compositions. Upon increasing the PrP concentration in close proximity of the bilayer by enhancing the initial electrostatic interaction, lipidated PrP variants, in particular the full length PrP construct (aa 23 231), exhibited a higher binding affinity towards the bilayer compared to recombinant PrP. This finding corroborates the significance of the GPI anchor mimic in PrP membrane interactions. Further cell imaging experiments using super-resolution structured illumination microscopy (SR SIM) combined with co localization analysis confirmed the membrane localization of Cy5 labeled PrP constructs equipped with a GPI anchor mimic in neuron like SH SY5Y cells. The dynamic behavior of PrP within the ordered and disordered regions of the plasma membrane as well as the actin cytoskeleton was studied extensively with fluorescence correlation spectroscopy (FCS). Imaging total internal reflection-FCS (ITIR-FCS) measurements demonstrated that full length PrP modified with a GPI anchor mimic affected the cholesterol dependent membrane domains by making them more fluid. No such impact was observed for PrP without a GPI anchor mimic. This emphasizes the significance of the interaction between the cellular membrane, PrP and its GPI anchor in cells. By combining methyl-β-cyclodextrin (mβCD) treatments, a cholesterol depleting agent, with addition of latrunculin A (LatA), an actin polymerization inhibitor, the interaction of lipidated PrP labeled with Cy5 in its membrane environment was studied. FCS revealed that PrP containing a GPI anchor mimic exhibits a lower (compared to free diffusing species), cholesterol independent and cytoskeleton-dependent mobility. Manipulation of the link between PrP and the cytoskeleton by inhibiting actin polymerization induced an even slower diffusion of Cy5 labeled PrP. Typically, decelaration of diffusion is attributed to protein clustering, which could resemble the initial step of PrP aggregation. We propose that an intact actin cytoskeleton can act as a barrier for the conversion of PrPC into PrPSc on cell membranes. Thus, the cytoskeleton membrane association that immobilizes PrP via the actin cytoskeleton can be hypothesized to play a crucial role in the PrPC PrPSc conversion. By taking advantage of site-selectively modified PrP variants and biophysical investigations of their interactions with membranes, including a complex live cell setting, we gained an improved understanding of the synergistic interplay between PrP, its GPI anchor, the cellular membrane and the cytoskeleton.
author2 Cho Nam-Joon
author_facet Cho Nam-Joon
Hackl, Stefanie
format Thesis-Doctor of Philosophy
author Hackl, Stefanie
author_sort Hackl, Stefanie
title The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants
title_short The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants
title_full The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants
title_fullStr The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants
title_full_unstemmed The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants
title_sort impact of membrane composition on conformation and trafficking of lipidated prion protein (prp) variants
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/136871
_version_ 1759853011809599488
spelling sg-ntu-dr.10356-1368712023-03-04T16:45:19Z The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants Hackl, Stefanie Cho Nam-Joon School of Materials Science & Engineering University of Natural Resources and Life Sciences Austrian Institute of Technology University of Vienna Research Techno Plaza Knoll Wolfgang NJCho@ntu.edu.sg, Wolfgang.Knoll@ait.ac.at Engineering::Chemical engineering::Biochemical engineering Prion protein (PrP) aggregation arises from the misfolding of the native cellular PrP (PrPC) and is a key pathophysiologic event in fatal neurodegenerative prion diseases. To elucidate the mechanism of conversion of PrPC into toxic PrPSc, homogeneous PrP constructs carrying a glycosylphosphatidylinositol (GPI) anchor mimic served as tools to directly observe PrP at the cellular membrane, the initial site of prion infection and PrP misfolding. The posttranslational modifications (PTMs) of PrP, especially the GPI anchor, have been shown to be crucially involved in PrPSc formation. To this end, fluorescently labeled, folded PrP variants equipped with GPI anchor mimicking peptides were generated via a semisynthesis approach. Secondary structures of the resulting PrP constructs were assessed by circular dichroism (CD). All PrP variants exhibited typical far-UV CD spectra of predominantly α-helical proteins, in agreement with the structure of native PrPC. In vitro aggregation, monitored by thioflavin T (ThT) fluorescence and proteinase K (PK) resistance, illustrated their use in understanding key steps of PrP pathology. To study the PrP membrane interaction, we monitored PrP association on artificial supported bilayers in quartz crystal microbalance-dissipation (QCM-D) experiments in real time, varying pH, lipid and salt compositions. Upon increasing the PrP concentration in close proximity of the bilayer by enhancing the initial electrostatic interaction, lipidated PrP variants, in particular the full length PrP construct (aa 23 231), exhibited a higher binding affinity towards the bilayer compared to recombinant PrP. This finding corroborates the significance of the GPI anchor mimic in PrP membrane interactions. Further cell imaging experiments using super-resolution structured illumination microscopy (SR SIM) combined with co localization analysis confirmed the membrane localization of Cy5 labeled PrP constructs equipped with a GPI anchor mimic in neuron like SH SY5Y cells. The dynamic behavior of PrP within the ordered and disordered regions of the plasma membrane as well as the actin cytoskeleton was studied extensively with fluorescence correlation spectroscopy (FCS). Imaging total internal reflection-FCS (ITIR-FCS) measurements demonstrated that full length PrP modified with a GPI anchor mimic affected the cholesterol dependent membrane domains by making them more fluid. No such impact was observed for PrP without a GPI anchor mimic. This emphasizes the significance of the interaction between the cellular membrane, PrP and its GPI anchor in cells. By combining methyl-β-cyclodextrin (mβCD) treatments, a cholesterol depleting agent, with addition of latrunculin A (LatA), an actin polymerization inhibitor, the interaction of lipidated PrP labeled with Cy5 in its membrane environment was studied. FCS revealed that PrP containing a GPI anchor mimic exhibits a lower (compared to free diffusing species), cholesterol independent and cytoskeleton-dependent mobility. Manipulation of the link between PrP and the cytoskeleton by inhibiting actin polymerization induced an even slower diffusion of Cy5 labeled PrP. Typically, decelaration of diffusion is attributed to protein clustering, which could resemble the initial step of PrP aggregation. We propose that an intact actin cytoskeleton can act as a barrier for the conversion of PrPC into PrPSc on cell membranes. Thus, the cytoskeleton membrane association that immobilizes PrP via the actin cytoskeleton can be hypothesized to play a crucial role in the PrPC PrPSc conversion. By taking advantage of site-selectively modified PrP variants and biophysical investigations of their interactions with membranes, including a complex live cell setting, we gained an improved understanding of the synergistic interplay between PrP, its GPI anchor, the cellular membrane and the cytoskeleton. Doctor of Philosophy 2020-02-04T06:15:48Z 2020-02-04T06:15:48Z 2019 Thesis-Doctor of Philosophy Hacjke, S. (2019). The impact of membrane composition on conformation and trafficking of lipidated prion protein (PrP) variants. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/136871 10.32657/10356/136871 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University