Advanced applications of periodic fibre structures in chemical sensing

Optical fibres had found applications in a wide range of engineering fields including but not limited to manufacturing, medical technology and structural monitoring since its discovery. With the maturity of optical fibre technology and demand to monitor the environment, optical fibre environmental s...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Rex Xiao
Other Authors: Tjin Swee Chuan
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/136895
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-136895
record_format dspace
spelling sg-ntu-dr.10356-1368952023-07-04T17:21:56Z Advanced applications of periodic fibre structures in chemical sensing Tan, Rex Xiao Tjin Swee Chuan School of Electrical and Electronic Engineering University of Southampton Morten Ibsen esctjin@ntu.edu.sg Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics Optical fibres had found applications in a wide range of engineering fields including but not limited to manufacturing, medical technology and structural monitoring since its discovery. With the maturity of optical fibre technology and demand to monitor the environment, optical fibre environmental sensors received increased attention. Optical fibres can detect changes in its environment in the form of refractive index (RI), temperature, strain and other perturbances. Changes in environmental RI is particularly of interest to this thesis as it can be indicative of pollution amongst other issues. Furthermore, optical fibre sensitivity of RI can be exploited for sensing selected chemicals with simple surface coatings, enabling targeted chemical sensing in the environment. This thesis presents two new fibre Bragg grating (FBG) based RI sensing schemes designed to address the issues of temperature and strain cross-sensitivity that are plaguing most state-of-the-art fibre RI sensors. Both proposed schemes can measure RI and temperature simultaneous with no cross-sensitivity effect. The first of the sensing scheme adopts a low finesse Fabry-Perot (FP) cavity formed between an FBG and the cleaved end of the optical fibre, with the cleaved fibre end as the sensing interface. This sensor measures the RI through the modulation of the resulting FP interference while measuring temperature change from spectral shifts. A maximum RI sensitivity of 230dB/RIU in the RI range of 1.333 to 1.471 and temperature sensitivity of 8.43pm/ºC were achieved. The second scheme makes use of a birefringent FBG inscribed into a special C-shaped birefringent optical fibre where one polarisation mode is purposefully exposed to the environment. The birefringence of this special fibre is affected by changes in environmental RI and causes spectral response to the birefringent FBG in the form of polarisation mode separation, while temperature change induces a common spectral shift regardless of polarisation. A maximum RI sensitivity of 1300pm/RIU in the RI range of 1.333 to 1.410 was achieved. Work on the first RI sensing scheme was further explored by coating the sensing fibre end with Ethylenediaminetetraacetic acid (EDTA) and Molybdenum disulphide (MoS2) for heavy metal ion in water and ethylene gas sensing respectively. Both the sensors achieved high sensitivity, being able to detect traces of heavy metal ion in water from 10ppm and ethylene gas from 500ppb. Doctor of Philosophy 2020-02-04T08:44:06Z 2020-02-04T08:44:06Z 2019 Thesis-Doctor of Philosophy Tan, R. X. (2019). Advanced applications of periodic fibre structures in chemical sensing. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/136895 10.32657/10356/136895 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
spellingShingle Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
Tan, Rex Xiao
Advanced applications of periodic fibre structures in chemical sensing
description Optical fibres had found applications in a wide range of engineering fields including but not limited to manufacturing, medical technology and structural monitoring since its discovery. With the maturity of optical fibre technology and demand to monitor the environment, optical fibre environmental sensors received increased attention. Optical fibres can detect changes in its environment in the form of refractive index (RI), temperature, strain and other perturbances. Changes in environmental RI is particularly of interest to this thesis as it can be indicative of pollution amongst other issues. Furthermore, optical fibre sensitivity of RI can be exploited for sensing selected chemicals with simple surface coatings, enabling targeted chemical sensing in the environment. This thesis presents two new fibre Bragg grating (FBG) based RI sensing schemes designed to address the issues of temperature and strain cross-sensitivity that are plaguing most state-of-the-art fibre RI sensors. Both proposed schemes can measure RI and temperature simultaneous with no cross-sensitivity effect. The first of the sensing scheme adopts a low finesse Fabry-Perot (FP) cavity formed between an FBG and the cleaved end of the optical fibre, with the cleaved fibre end as the sensing interface. This sensor measures the RI through the modulation of the resulting FP interference while measuring temperature change from spectral shifts. A maximum RI sensitivity of 230dB/RIU in the RI range of 1.333 to 1.471 and temperature sensitivity of 8.43pm/ºC were achieved. The second scheme makes use of a birefringent FBG inscribed into a special C-shaped birefringent optical fibre where one polarisation mode is purposefully exposed to the environment. The birefringence of this special fibre is affected by changes in environmental RI and causes spectral response to the birefringent FBG in the form of polarisation mode separation, while temperature change induces a common spectral shift regardless of polarisation. A maximum RI sensitivity of 1300pm/RIU in the RI range of 1.333 to 1.410 was achieved. Work on the first RI sensing scheme was further explored by coating the sensing fibre end with Ethylenediaminetetraacetic acid (EDTA) and Molybdenum disulphide (MoS2) for heavy metal ion in water and ethylene gas sensing respectively. Both the sensors achieved high sensitivity, being able to detect traces of heavy metal ion in water from 10ppm and ethylene gas from 500ppb.
author2 Tjin Swee Chuan
author_facet Tjin Swee Chuan
Tan, Rex Xiao
format Thesis-Doctor of Philosophy
author Tan, Rex Xiao
author_sort Tan, Rex Xiao
title Advanced applications of periodic fibre structures in chemical sensing
title_short Advanced applications of periodic fibre structures in chemical sensing
title_full Advanced applications of periodic fibre structures in chemical sensing
title_fullStr Advanced applications of periodic fibre structures in chemical sensing
title_full_unstemmed Advanced applications of periodic fibre structures in chemical sensing
title_sort advanced applications of periodic fibre structures in chemical sensing
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/136895
_version_ 1772828212555939840