Understanding neutrophil development and function in health and disease
Neutrophils are specialised innate cells that require constant replenishment from proliferative bone marrow (BM) precursors due to their short half-life. While it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to fu...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Doctor of Philosophy |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/136980 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-136980 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1369802023-02-28T18:43:21Z Understanding neutrophil development and function in health and disease Kwok, Immanuel Weng Han [Supervisor not in the list] School of Biological Sciences Singapore Immunology Network, A*STAR Ng Lai Guan Ng_Lai_Guan@immunol.a-star.edu.sg Science::Biological sciences Neutrophils are specialised innate cells that require constant replenishment from proliferative bone marrow (BM) precursors due to their short half-life. While it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Utilising several high-dimensional cytometric, transcriptomic and computational analyses, we characterised each neutrophil developmental stage and investigated their unique phenotypical and functional properties. Here, we present the identification of two distinct proliferative and committed neutrophil progenitors (proNeu1 and proNeu2) that give rise to a neutrophil precursor (preNeus), which sequentially differentiates into immature neutrophils and mature neutrophils. We showed the transcriptional programming of neutrophil commitment and maturation, as each subset progressively substitute their proliferative program and gain migratory and effector functions. Notably, the transcription factor C/EBPe was critical for development, not only in governing the neutrophil lineage fate but also for the generation of preNeus. In summary, our study identifies specialised granulocytic populations in the BM that ensure supply under homeostasis and stress responses. We envision that these findings will help to unravel the complexity of neutrophil heterogeneity in both health disease conditions. Doctor of Philosophy 2020-02-10T05:34:25Z 2020-02-10T05:34:25Z 2019 Thesis-Doctor of Philosophy Kwok, I. W. H. (2019). Understanding neutrophil development and function in health and disease. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/136980 10.32657/10356/136980 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Biological sciences |
spellingShingle |
Science::Biological sciences Kwok, Immanuel Weng Han Understanding neutrophil development and function in health and disease |
description |
Neutrophils are specialised innate cells that require constant replenishment from proliferative bone marrow (BM) precursors due to their short half-life. While it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Utilising several high-dimensional cytometric, transcriptomic and computational analyses, we characterised each neutrophil developmental stage and investigated their unique phenotypical and functional properties. Here, we present the identification of two distinct proliferative and committed neutrophil progenitors (proNeu1 and proNeu2) that give rise to a neutrophil precursor (preNeus), which sequentially differentiates into immature neutrophils and mature neutrophils. We showed the transcriptional programming of neutrophil commitment and maturation, as each subset progressively substitute their proliferative program and gain migratory and effector functions. Notably, the transcription factor C/EBPe was critical for development, not only in governing the neutrophil lineage fate but also for the generation of preNeus. In summary, our study identifies specialised granulocytic populations in the BM that ensure supply under homeostasis and stress responses. We envision that these findings will help to unravel the complexity of neutrophil heterogeneity in both health disease conditions. |
author2 |
[Supervisor not in the list] |
author_facet |
[Supervisor not in the list] Kwok, Immanuel Weng Han |
format |
Thesis-Doctor of Philosophy |
author |
Kwok, Immanuel Weng Han |
author_sort |
Kwok, Immanuel Weng Han |
title |
Understanding neutrophil development and function in health and disease |
title_short |
Understanding neutrophil development and function in health and disease |
title_full |
Understanding neutrophil development and function in health and disease |
title_fullStr |
Understanding neutrophil development and function in health and disease |
title_full_unstemmed |
Understanding neutrophil development and function in health and disease |
title_sort |
understanding neutrophil development and function in health and disease |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/136980 |
_version_ |
1759856257667170304 |