Towards secure and robust stateful deep learning systems with model-based analysis
More and more we start to embrace the convenience and effectiveness of the rapidly advancing artificial intelligence (AI) technologies in our lives and different industries. Within this revolution, deep learning (DL), as one of the key innovation in AI, has made significant progress over the past de...
Saved in:
主要作者: | Du, Xiaoning |
---|---|
其他作者: | Liu Yang |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/137015 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Marble: Model-based robustness analysis of stateful deep learning systems
由: DU, Xiaoning, et al.
出版: (2020) -
DeepStellar: Model-based quantitative analysis of stateful deep learning systems
由: DU, Xiaoning, et al.
出版: (2019) -
Towards robust models of code via energy-based learning on auxiliary datasets
由: BUI, Duy Quoc Nghi, et al.
出版: (2022) -
Gamification of learning for cyber security
由: Tiong, Alex Jia Hui
出版: (2020) -
RobOT: Robustness-oriented testing for deep learning systems
由: WANG, Jingyi, et al.
出版: (2021)