ADI-FDTD method with fourth order accuracy in time
This letter presents an unconditionally stable alternating direction implicit finite-difference time-domain (ADI-FDTD) method with fourth order accuracy in time. Analytical proof of unconditional stability and detailed analysis of numerical dispersion are presented. Compared to second order ADI-FDTD...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/137113 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This letter presents an unconditionally stable alternating direction implicit finite-difference time-domain (ADI-FDTD) method with fourth order accuracy in time. Analytical proof of unconditional stability and detailed analysis of numerical dispersion are presented. Compared to second order ADI-FDTD and six-steps SS-FDTD, the fourth order ADI-FDTD generally achieves lower phase velocity error for sufficiently fine mesh. Using finer mesh gridding also reduces the phase velocity error floor, which dictates the accuracy limit due to spatial discretization errors when the time step size is reduced further. |
---|