Surface and structural design of nanocompounds using molecular dynamics simulations for desalination processes

The increasing freshwater demand has triggered a critical need for expansion and development of desalination and water treatment industry. Recently, significant improvements have been made to the performance of desalination and water treatment system with the aid from nanomaterials and nanostructure...

Full description

Saved in:
Bibliographic Details
Main Author: Kieu, Trung Hieu
Other Authors: Law Wing-Keung, Adrian
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137138
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The increasing freshwater demand has triggered a critical need for expansion and development of desalination and water treatment industry. Recently, significant improvements have been made to the performance of desalination and water treatment system with the aid from nanomaterials and nanostructures. However, due to the lack of understanding of mechanism at the nanoscale, the selection of material and structure is mainly based on empirical experience, which hinders the speed of the progress. In the present study, a novel approach for investigating the nanoscale performance of the compounds using computational molecular dynamics (MD) simulations is proposed. The simulation method is applied to examine the atomistic behaviors of four different environmental processes: (1) pressure-driven water transport through multilayer graphene membrane; (2) water evaporation through a capillary graphene bilayer; (3) water evaporation on a corrugated graphene oxide surface with different morphology and (4) non-equilibrium evaporation of nano water droplet under effect of vapor pressure. The model verification results show good agreement with the measuring data, and the underlying mechanisms are thoroughly explained through the intensive and extensive properties of the systems. This work highlights potentials to efficiently utilize computational methods to accelerate the next-generation development of environmental material with nanostructure and surface design to enhance the productivity of desalination and water treatment processes.