Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches
Ballistic projectiles are the most frequently lethal volcanic hazard close to the vent. Recent eruptions of Ontake in 2014 and Kusatsu-Shirane in 2018 showed that un-reinforced, timber-framed buildings - those typically considered highly vulnerable to the dangerous penetration of ballistics - provid...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/137188 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-137188 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1371882023-02-28T16:40:57Z Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches Williams, George T. Kennedy, Ben M. Lallemant, David Wilson, Thomas M. Allen, Nicole Scott, Allan Jenkins, Susanna F. Asian School of the Environment Earth Observatory of Singapore Science::Geology Volcano Volcanic Hazards Ballistic projectiles are the most frequently lethal volcanic hazard close to the vent. Recent eruptions of Ontake in 2014 and Kusatsu-Shirane in 2018 showed that un-reinforced, timber-framed buildings - those typically considered highly vulnerable to the dangerous penetration of ballistics - provided life-saving shelter from ballistic impact. Modelled kinetic energies of some non-penetrating impacts were an order of magnitude above expected penetration thresholds. It has been hypothesised that a pre-existing layer of tephra on the roofs cushioned impacts. To quantitatively test this, and improve our understanding of how buildings respond to projectile impacts, we used a pneumatic cannon to simulate block impacts to clay tiles and reinforced concrete roof slabs covered with tephra layers 0–20 cm thick. Substantially higher impact energies were resisted when tephra was present with 5 cm of tephra approximately tripling the penetration threshold of both building materials. Fragility curves, which relate ballistic hazard intensity with the probability of building damage, were developed from our experimental data following three curve fitting approaches: generalised link models, cumulative link models and data binning. A key benefit of these approaches is that confidence in these curves can be robustly quantified from the data – the first time that this has been attempted for volcanic fragility curves. This study shows how the extent of building damage can be strongly influenced by the sequence of volcanic hazards and provides an example of proactive risk management through testing of physical mitigation strategies in a laboratory environment. Published version 2020-03-05T07:58:28Z 2020-03-05T07:58:28Z 2019 Journal Article Williams, G. T., Kennedy, B. M., Lallemant, D., Wilson, T. M., Allen, N., Scott, A., & Jenkins, S. F. (2019). Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches. Journal of Volcanology and Geothermal Research, 388, 106711. doi:10.1016/j.jvolgeores.2019.106711 0377-0273 https://hdl.handle.net/10356/137188 10.1016/j.jvolgeores.2019.106711 2-s2.0-85075464648 388 106711 en Journal of Volcanology and Geothermal Research 10.21979/N9/8XERMI © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Geology Volcano Volcanic Hazards |
spellingShingle |
Science::Geology Volcano Volcanic Hazards Williams, George T. Kennedy, Ben M. Lallemant, David Wilson, Thomas M. Allen, Nicole Scott, Allan Jenkins, Susanna F. Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
description |
Ballistic projectiles are the most frequently lethal volcanic hazard close to the vent. Recent eruptions of Ontake in 2014 and Kusatsu-Shirane in 2018 showed that un-reinforced, timber-framed buildings - those typically considered highly vulnerable to the dangerous penetration of ballistics - provided life-saving shelter from ballistic impact. Modelled kinetic energies of some non-penetrating impacts were an order of magnitude above expected penetration thresholds. It has been hypothesised that a pre-existing layer of tephra on the roofs cushioned impacts. To quantitatively test this, and improve our understanding of how buildings respond to projectile impacts, we used a pneumatic cannon to simulate block impacts to clay tiles and reinforced concrete roof slabs covered with tephra layers 0–20 cm thick. Substantially higher impact energies were resisted when tephra was present with 5 cm of tephra approximately tripling the penetration threshold of both building materials. Fragility curves, which relate ballistic hazard intensity with the probability of building damage, were developed from our experimental data following three curve fitting approaches: generalised link models, cumulative link models and data binning. A key benefit of these approaches is that confidence in these curves can be robustly quantified from the data – the first time that this has been attempted for volcanic fragility curves. This study shows how the extent of building damage can be strongly influenced by the sequence of volcanic hazards and provides an example of proactive risk management through testing of physical mitigation strategies in a laboratory environment. |
author2 |
Asian School of the Environment |
author_facet |
Asian School of the Environment Williams, George T. Kennedy, Ben M. Lallemant, David Wilson, Thomas M. Allen, Nicole Scott, Allan Jenkins, Susanna F. |
format |
Article |
author |
Williams, George T. Kennedy, Ben M. Lallemant, David Wilson, Thomas M. Allen, Nicole Scott, Allan Jenkins, Susanna F. |
author_sort |
Williams, George T. |
title |
Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
title_short |
Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
title_full |
Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
title_fullStr |
Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
title_full_unstemmed |
Tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
title_sort |
tephra cushioning of ballistic impacts : quantifying building vulnerability through pneumatic cannon experiments and multiple fragility curve fitting approaches |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/137188 |
_version_ |
1759855713096564736 |