Coupling between exciton-polariton corner modes through edge states
Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two dimensional second order topological insulators give rise to zero dimensional localized corner modes that reside within the band gap of the...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/137285 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two dimensional second order topological insulators give rise to zero dimensional localized corner modes that reside within the band gap of the system along with edge modes that inhabit a band edge next to bulk modes. Thanks to the topological nature, information can be trapped at the corners of these systems which
will be unhampered even in the presence of disorder. Being localized at the corners, the exchange of information among the corner states is an issue. Here we show that the nonlinearity in an exciton polariton system can allow the coupling between the different corners through the edge states based on optical parametric scattering, realizing a system of multiple connectible topological modes. |
---|