Numerical investigation of an innovative metal structure in a PCM based heat sink
Numerical simulations were performed to examine the time-dependent melting in a PCM enclosure with two designs of conductive metal fins: a baseline design with conventional heat sink fin structure and a topologically optimized innovative structure. Two orientations of the PCM enclosures were investi...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/137425 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Numerical simulations were performed to examine the time-dependent melting in a PCM enclosure with two designs of conductive metal fins: a baseline design with conventional heat sink fin structure and a topologically optimized innovative structure. Two orientations of the PCM enclosures were investigated to characterize the orientation effects on the behaviours of PCM melting. The proposed simulation model was firstly validated by the published experimental results. The simulated device temperature, material phases and flow fields within the PCM enclosure developed under different operating conditions were presented and discussed. The simulation results showed that the optimized design generally outperformed the baseline design by obtaining a lower device temperature and alleviating the effects of orientations. At q = 50,000W/m2, the optimized design achieved a maximum temperature reduction of 8°C under Orientation 1 and 2.5°C under Orientation 2 in comparison to the baseline during the main stage of PCM melting. It was suggested that the promoted heat transfer performance by the optimized design was attributed to the improved heat diffusion capability as well as the intensified natural convection provided by its innovative metal structure. |
---|