Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses

Biological wastewater treatment with activated sludge followed by a liquid-solids separation step has been an established process for over a century. Effective liquid-solids separation can be made through biological or chemical flocculation. Biological flocculation involves the aggregation of organi...

Full description

Saved in:
Bibliographic Details
Main Author: Suresh, Akshaykumar
Other Authors: Ng Wun Jern
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137573
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-137573
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Environmental engineering::Water treatment
spellingShingle Engineering::Environmental engineering::Water treatment
Suresh, Akshaykumar
Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
description Biological wastewater treatment with activated sludge followed by a liquid-solids separation step has been an established process for over a century. Effective liquid-solids separation can be made through biological or chemical flocculation. Biological flocculation involves the aggregation of organic and inorganic components into flocs through the action of microbes and their by-products, i.e. extracellular polymeric substances (EPS). Adverse conditions can promote floc break-up, i.e. deflocculation, reducing effluent quality and increasing overall treatment costs. It is essential to have a better understanding of the biological flocculation process and factors influencing it, especially in cyclically conditioned (aerobic/anoxic/anaerobic) treatment processes. The exposure to low dissolved oxygen (DO) (<0.5 mg/L) conditions has been reported to promote deflocculation. However, in this dissertation studies, sludge from three different sources repeatedly showed a lack of deflocculation even after 24 hours subject to low DO and substrate depletion. Divalent cationic interactions, high bound EPS content and the activities of facultative bacterial communities were factors argued to have contributed to increased floc integrity, and which helped mitigate the deflocculation under low DO conditions. The importance of facultative bacterial communities on floc maintenance and mitigation of deflocculation under low DO conditions was confirmed through microbial inhibition experiments. Deflocculation, in the form of floc erosion, was observed under low DO conditions only when microbial inhibitory conditions were promoted using a mitochondrial uncoupler, sodium azide. Sodium azide also exhibited interactive tendencies with the EPS, which was confirmed through EPS fluorescence quenching studies and this was another mechanism through which floc integrity could be influenced. It was the microbial communities, their activities and metabolic by-products (EPS), and not necessarily the short-term DO transients, that influenced the flocculation state. The role of cations and their interactions in the stabilization of floc ecosystem was also confirmed when deflocculation occurred upon interaction of sludge samples with a chelating agent, ethylenediaminetetraacetic acid (EDTA). The chelation of calcium and magnesium ions from the floc body not only reduced the floc stabilizing ionic interactions, but also resulted in hampered microbial viability and activities. Consequently, irreversible deflocculation was observed above a threshold concentration of the chelating agent. Pre-complexation of EDTA with calcium ions counteracted its cation chelating, anti-bacterial and deflocculative tendencies. This highlighted the cations played a more important role in the overall floc ecosystem than previously considered, which helped maintain SBR sludge floc stability and integrity under different DO conditions. The results of this study confirmed the importance of overall microbial activities (including facultative bacteria) and cationic interactions in the maintenance of the floc ecosystem while disagreeing with the importance of short-term low DO transients. Unless a considerable adversarial stress was applied on the microbial communities, the EPS or cationic interactions, the sludge flocs would remain stable in a short-time disruption event. Thus, biological floc maintenance is a complex process that should be investigated relative to the conditions the flocs are most exposed to on a long-term basis.
author2 Ng Wun Jern
author_facet Ng Wun Jern
Suresh, Akshaykumar
format Thesis-Doctor of Philosophy
author Suresh, Akshaykumar
author_sort Suresh, Akshaykumar
title Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
title_short Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
title_full Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
title_fullStr Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
title_full_unstemmed Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
title_sort understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/137573
_version_ 1683493463029448704
spelling sg-ntu-dr.10356-1375732020-11-01T04:51:39Z Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses Suresh, Akshaykumar Ng Wun Jern Interdisciplinary Graduate School (IGS) Nanyang Environment and Water Research Institute wjng@ntu.edu.sg Engineering::Environmental engineering::Water treatment Biological wastewater treatment with activated sludge followed by a liquid-solids separation step has been an established process for over a century. Effective liquid-solids separation can be made through biological or chemical flocculation. Biological flocculation involves the aggregation of organic and inorganic components into flocs through the action of microbes and their by-products, i.e. extracellular polymeric substances (EPS). Adverse conditions can promote floc break-up, i.e. deflocculation, reducing effluent quality and increasing overall treatment costs. It is essential to have a better understanding of the biological flocculation process and factors influencing it, especially in cyclically conditioned (aerobic/anoxic/anaerobic) treatment processes. The exposure to low dissolved oxygen (DO) (<0.5 mg/L) conditions has been reported to promote deflocculation. However, in this dissertation studies, sludge from three different sources repeatedly showed a lack of deflocculation even after 24 hours subject to low DO and substrate depletion. Divalent cationic interactions, high bound EPS content and the activities of facultative bacterial communities were factors argued to have contributed to increased floc integrity, and which helped mitigate the deflocculation under low DO conditions. The importance of facultative bacterial communities on floc maintenance and mitigation of deflocculation under low DO conditions was confirmed through microbial inhibition experiments. Deflocculation, in the form of floc erosion, was observed under low DO conditions only when microbial inhibitory conditions were promoted using a mitochondrial uncoupler, sodium azide. Sodium azide also exhibited interactive tendencies with the EPS, which was confirmed through EPS fluorescence quenching studies and this was another mechanism through which floc integrity could be influenced. It was the microbial communities, their activities and metabolic by-products (EPS), and not necessarily the short-term DO transients, that influenced the flocculation state. The role of cations and their interactions in the stabilization of floc ecosystem was also confirmed when deflocculation occurred upon interaction of sludge samples with a chelating agent, ethylenediaminetetraacetic acid (EDTA). The chelation of calcium and magnesium ions from the floc body not only reduced the floc stabilizing ionic interactions, but also resulted in hampered microbial viability and activities. Consequently, irreversible deflocculation was observed above a threshold concentration of the chelating agent. Pre-complexation of EDTA with calcium ions counteracted its cation chelating, anti-bacterial and deflocculative tendencies. This highlighted the cations played a more important role in the overall floc ecosystem than previously considered, which helped maintain SBR sludge floc stability and integrity under different DO conditions. The results of this study confirmed the importance of overall microbial activities (including facultative bacteria) and cationic interactions in the maintenance of the floc ecosystem while disagreeing with the importance of short-term low DO transients. Unless a considerable adversarial stress was applied on the microbial communities, the EPS or cationic interactions, the sludge flocs would remain stable in a short-time disruption event. Thus, biological floc maintenance is a complex process that should be investigated relative to the conditions the flocs are most exposed to on a long-term basis. Doctor of Philosophy 2020-04-03T01:42:13Z 2020-04-03T01:42:13Z 2019 Thesis-Doctor of Philosophy Suresh, A. (2019). Understanding the stability of cyclic aerobic-anoxic conditioned sludge flocs under deflocculative stresses. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/137573 10.32657/10356/137573 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University