Melting and re-entrant melting of polydisperse hard disks

Because of long-wavelength fluctuations, the nature of solids and phase transitions in 2D are different from those in 3D systems, and have been heavily debated in past decades, in which the focus was on the existence of hexatic phase. Here, by using large scale computer simulations, we investigate t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ruiz, Sampedro Pablo, Lei, Qun-Li, Ni, Ran
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/137593
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Because of long-wavelength fluctuations, the nature of solids and phase transitions in 2D are different from those in 3D systems, and have been heavily debated in past decades, in which the focus was on the existence of hexatic phase. Here, by using large scale computer simulations, we investigate the melting transition in 2D systems of polydisperse hard disks. We find that, with increasing the particle size polydispersity, the melting transition can be qualitatively changed from the recently proposed two-stage process to the Kosterlitz-Thouless-Halperin-Nelson-Young scenario with significantly enlarged stability range for hexatic phase. Moreover, re-entrant melting transitions are found in high density systems of polydisperse hard disks, which were proven impossible in 3D polydisperse hard-sphere systems. These suggest a new fundamental difference between phase transitions in polydisperse systems in 2D and 3D.