Computable torsion abelian groups

We prove that c.c. torsion abelian groups can be described by a Π04-predicate that describes the failure of a brute-force diagonalisation attempt on such groups. We show that there is no simpler description since their index set is Π04-complete. The results can be viewed as a solution to a 60 year-o...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Melnikov, Alexander G., Ng, Keng Meng
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/137680
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We prove that c.c. torsion abelian groups can be described by a Π04-predicate that describes the failure of a brute-force diagonalisation attempt on such groups. We show that there is no simpler description since their index set is Π04-complete. The results can be viewed as a solution to a 60 year-old problem of Mal'cev in the case of torsion abelian groups. We prove that a computable torsion abelian group has one or infinitely many computable copies, up to computable isomorphism. The result confirms a conjecture of Goncharov from the early 1980s for the case of torsion abelian groups.