Carbon quantum dot implanted graphite carbon nitride nanotubes : excellent charge separation and enhanced photocatalytic hydrogen evolution

Graphite carbon nitride (g‐C3N4) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g‐C3N4 nanotubes were syn...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Yang, Liu, Xueqin, Liu, Jia, Han, Bo, Hu, Xiaoqin, Yang, Fan, Xu, Zuwei, Li, Yinchang, Jia, Songru, Li, Zhen, Zhao, Yanli
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137740
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Graphite carbon nitride (g‐C3N4) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g‐C3N4 nanotubes were synthesized by thermal polymerization of freeze‐dried urea and CQDs precursor. The CQD‐implanted g‐C3N4 nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H2 production rate of 3538.3 μmol g−1 h−1 and a notable quantum yield of 10.94 % at 420 nm.