Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors

Stretchable strain sensors, which convert mechanical stimuli into electrical signals, largely fuel the growth of wearable bioelectronics due to the ubiquitous, health-related strain in biological systems. In contrast to rigid conventional strain sensors, stretchable strain sensors present advantages...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiang, Ying, Liu, Zhiyuan, Wang, Changxian, Chen, Xiaodong
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137809
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-137809
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Materials
Heterogeneous Strain
Sensors
spellingShingle Engineering::Materials
Heterogeneous Strain
Sensors
Jiang, Ying
Liu, Zhiyuan
Wang, Changxian
Chen, Xiaodong
Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
description Stretchable strain sensors, which convert mechanical stimuli into electrical signals, largely fuel the growth of wearable bioelectronics due to the ubiquitous, health-related strain in biological systems. In contrast to rigid conventional strain sensors, stretchable strain sensors present advantages of conformality and stretchability, solving the mechanical mismatch between electronics and the human body. However, the great challenge of stretchable strain sensors lies in achieving high sensitivity, which is required for both signal fidelity and cost considerations. Recent advances to solve this sensitivity challenge have focused on material optimization, in search of the optimum combination of conductive active materials and elastomer substrates among a myriad of artificial or natural materials. However, high sensitivity with a gauge factor larger than 50 remains a grand challenge, especially within large-strain regions.Here we present heterogeneous strain distribution of elastomer substrates as a powerful strategy to significantly enhance the sensitivity of stretchable strain sensors. The theoretical foundation of this strategy is mathematically proven on the basis of Ohm’s law in electrics and mechanics of materials. First, the extent of the sensitivity enhancement is proved to be determined by the local strain in resistance-testing segments of heterogeneous strain sensors. Next, the local strain is proved to be quantitatively decided by material properties such as section area and Young’s modulus. Thus, the necessary and sufficient condition to achieve high sensitivity in heterogeneous strain sensors is that the Young’s modulus reciprocal or section area reciprocal in the resistance-testing segment is larger than the mean value. This provides a theoretical design guideline to achieve high sensitivity via heterogeneous strain distribution. On the basis of this guideline, we systematically summarize concrete instances of heterogeneity-induced sensitivity improvement in stretchable strain sensors, in sequence of increasing dimensionality. A typical example of a one-dimensional heterogeneous strain sensor is a structured fiber with microbeads, where the varied section area along the fiber axis results in heterogeneous strain and sensitivity improvement. Two-dimensional heterogeneous sensors in the form of thin films contain thickness gradient sensors and auxetic mechanical metamaterial sensors. The former exhibit heterogeneous section area via the self-pinning method, while the latter show heterogeneity in both the strain direction and amplitude, leading to a 24-fold improvement in sensitivity. Three-dimensional strain sensors include rationally structured sensors for out-of-plane force detection and asymmetric active materials in electronic whiskers. The resultant enhanced sensitivity in these heterogeneous strain sensors is beneficial for applications such as continuous health monitoring, biomedical diagnostics, and replacement prosthetics, taking advantage of augmented detection accuracy and declined device cost. Finally, we discuss possible future work in exploiting heterogeneous strain distributions, involving extended methodology to achieve heterogeneity, employing suppressed strain for stretchable electrodes, cyclic durability for long-term applications, and multifunctional system-level integration. We believe that this strategy of using heterogeneous strain distribution to enhance sensitivity can strongly promote the development of stretchable strain sensors for both practical and theoretical requirements.
author2 School of Materials Science & Engineering
author_facet School of Materials Science & Engineering
Jiang, Ying
Liu, Zhiyuan
Wang, Changxian
Chen, Xiaodong
format Article
author Jiang, Ying
Liu, Zhiyuan
Wang, Changxian
Chen, Xiaodong
author_sort Jiang, Ying
title Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
title_short Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
title_full Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
title_fullStr Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
title_full_unstemmed Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
title_sort heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
publishDate 2020
url https://hdl.handle.net/10356/137809
_version_ 1772828151995432960
spelling sg-ntu-dr.10356-1378092023-07-14T15:54:11Z Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors Jiang, Ying Liu, Zhiyuan Wang, Changxian Chen, Xiaodong School of Materials Science & Engineering Innovative Centre for Flexible Devices (iFLEX) Engineering::Materials Heterogeneous Strain Sensors Stretchable strain sensors, which convert mechanical stimuli into electrical signals, largely fuel the growth of wearable bioelectronics due to the ubiquitous, health-related strain in biological systems. In contrast to rigid conventional strain sensors, stretchable strain sensors present advantages of conformality and stretchability, solving the mechanical mismatch between electronics and the human body. However, the great challenge of stretchable strain sensors lies in achieving high sensitivity, which is required for both signal fidelity and cost considerations. Recent advances to solve this sensitivity challenge have focused on material optimization, in search of the optimum combination of conductive active materials and elastomer substrates among a myriad of artificial or natural materials. However, high sensitivity with a gauge factor larger than 50 remains a grand challenge, especially within large-strain regions.Here we present heterogeneous strain distribution of elastomer substrates as a powerful strategy to significantly enhance the sensitivity of stretchable strain sensors. The theoretical foundation of this strategy is mathematically proven on the basis of Ohm’s law in electrics and mechanics of materials. First, the extent of the sensitivity enhancement is proved to be determined by the local strain in resistance-testing segments of heterogeneous strain sensors. Next, the local strain is proved to be quantitatively decided by material properties such as section area and Young’s modulus. Thus, the necessary and sufficient condition to achieve high sensitivity in heterogeneous strain sensors is that the Young’s modulus reciprocal or section area reciprocal in the resistance-testing segment is larger than the mean value. This provides a theoretical design guideline to achieve high sensitivity via heterogeneous strain distribution. On the basis of this guideline, we systematically summarize concrete instances of heterogeneity-induced sensitivity improvement in stretchable strain sensors, in sequence of increasing dimensionality. A typical example of a one-dimensional heterogeneous strain sensor is a structured fiber with microbeads, where the varied section area along the fiber axis results in heterogeneous strain and sensitivity improvement. Two-dimensional heterogeneous sensors in the form of thin films contain thickness gradient sensors and auxetic mechanical metamaterial sensors. The former exhibit heterogeneous section area via the self-pinning method, while the latter show heterogeneity in both the strain direction and amplitude, leading to a 24-fold improvement in sensitivity. Three-dimensional strain sensors include rationally structured sensors for out-of-plane force detection and asymmetric active materials in electronic whiskers. The resultant enhanced sensitivity in these heterogeneous strain sensors is beneficial for applications such as continuous health monitoring, biomedical diagnostics, and replacement prosthetics, taking advantage of augmented detection accuracy and declined device cost. Finally, we discuss possible future work in exploiting heterogeneous strain distributions, involving extended methodology to achieve heterogeneity, employing suppressed strain for stretchable electrodes, cyclic durability for long-term applications, and multifunctional system-level integration. We believe that this strategy of using heterogeneous strain distribution to enhance sensitivity can strongly promote the development of stretchable strain sensors for both practical and theoretical requirements. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Accepted version 2020-04-15T04:09:01Z 2020-04-15T04:09:01Z 2019 Journal Article Jiang, Y., Liu, Z., Wang, C., & Chen, X. (2019). Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors. Accounts of Chemical Research, 52(1), 82-90. doi:10.1021/acs.accounts.8b00499 0001-4842 https://hdl.handle.net/10356/137809 10.1021/acs.accounts.8b00499 30586278 2-s2.0-85059629164 1 52 82 90 en Accounts of Chemical Research This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.accounts.8b00499 application/pdf