Combinatorial nano-bio interfaces

Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interface...

Full description

Saved in:
Bibliographic Details
Main Authors: Cai, Pingqiang, Zhang, Xiaoqian, Wang, Ming, Wu, Yun-Long, Chen, Xiaodong
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137810
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.