Understanding variations (variant & invariant) of classification tasks/targets
There still lacks a certain mechanism to cater for variance in data and a lack of levels of impact brought by variance. We introduce a composite term called learning, where average improvement upon every epoch divided by previous loss value to have a standard reference across our models of differing...
Saved in:
主要作者: | Wan, Tai Fong |
---|---|
其他作者: | Althea Liang |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/138001 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Semantic segmentation of delayered IC images with shape-variant convolution
由: Wang, Xue
出版: (2022) -
Exploring versatile neural architectures across modalities and perception tasks
由: Zhang, Wenwei
出版: (2023) -
Skeleton-based human activity understanding
由: Liu, Jun
出版: (2019) -
Fine-grained image classification using deep learning
由: Sun, Deguang
出版: (2022) -
2D and 3D visual understanding with limited supervision
由: Wu, Zhonghua
出版: (2023)