Role of water in suppressing pecombination pathways in CH3NH3PbI3 perovskite solar cells

Moisture degradation of halide perovskites is the Achilles heel of perovskite solar cells. A surprising revelation in 2014 about the beneficial effects of controlled humidity in enhancing device efficiencies overthrew established paradigms on perovskite solar cell fabrication. Despite the extensive...

Full description

Saved in:
Bibliographic Details
Main Authors: Solanki, Ankur, Lim, Swee Sien, Mhaisalkar, Subodh, Sum, Tze Chien
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138050
https://doi.org/10.21979/N9/WUEMZC
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Moisture degradation of halide perovskites is the Achilles heel of perovskite solar cells. A surprising revelation in 2014 about the beneficial effects of controlled humidity in enhancing device efficiencies overthrew established paradigms on perovskite solar cell fabrication. Despite the extensive studies on water additives in perovskite solar cell processing that followed, detailed understanding of the role of water from the photophysical perspective remains lacking; specifically, the interplay between the induced morphological effects and the intrinsic recombination pathways. Through ultrafast optical spectroscopy, we show that both the monomolecular and bimolecular recombination rate constants decrease by approximately 1 order with the addition of an optimal 1% H2O by volume in CH3NH3PbI3 as compared to the reference (without the H2O additive). Correspondingly, the trap density reduces from 4.8 × 1017 cm-3 (reference) to 3.2 × 1017 cm-3 with 1% H2O. We obtained an efficiency of 12.3% for the champion inverted CH3NH3PbI3 perovskite solar cell (1% H2O additive) as compared to the 10% efficiency for the reference cell. Increasing the H2O content further is deleterious for the device. Trace amounts of H2O afford the benefits of surface trap passivation and suppression of trap-mediated recombination, whereas higher concentrations result in a preferential dissolution of methylammonium iodide during fabrication that increases the trap density (MA vacancies). Importantly, our study reveals the effects of trace H2O additives on the photophysical properties of CH3NH3PbI3 films.