AI-based stock market trending analysis

In this paper, we present two hierarchical neural networks for market trends predictions. These models utilised sentiment analysis of news as well as past information of returns and prices to predict the next day trend (i.e. bullish, stagnant, bearish). The hierarchical models were trained in the...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ko, Johann
مؤلفون آخرون: Li Fang
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/138093
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this paper, we present two hierarchical neural networks for market trends predictions. These models utilised sentiment analysis of news as well as past information of returns and prices to predict the next day trend (i.e. bullish, stagnant, bearish). The hierarchical models were trained in the context of swing trading of 2 days using price actions of Dow Jones Industrial Average (Ticker: DJI). Experimental studies showed an F1-accuracy of 0.53 on this 3-class problem with Hierarchical LSTM. This was a considerable improvement over the industry-standard model, ARIMA. The Hierarchical LSTM came out as the best performing model.