Extracting texture feature for time series classification

Time series exists in many pattern recognition and prediction application in many different industrial fields, such as medicine, biology, economy and others. In this kind of a data analytical tasks, the classification phase is one of the most important phases as it allows us to assign a class to a p...

全面介紹

Saved in:
書目詳細資料
主要作者: Chua, Kenneth Boon Chang
其他作者: Deepu Rajan
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/138146
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Time series exists in many pattern recognition and prediction application in many different industrial fields, such as medicine, biology, economy and others. In this kind of a data analytical tasks, the classification phase is one of the most important phases as it allows us to assign a class to a previously unseen record as precise as possible. In classification, past researches have shown that rules such as the 1-Nearest Neighbour with a distance measure in time domain performs well in a wide variety of application domains. However, there are many time series that are not obvious in time domain. For instance, the classification of chainsaws where the feature that represents this time series would be frequency instead of time. For such classification, an alternative representation would be necessary. In this work, we will investigate the use of images for time series classification. In particularly, we extract texture features from recurrence plots as their graphical nature exposes a structural pattern in the data.