Acoustic higher-order topological insulator on a kagome lattice
Higher-order topological insulators1-5 are a family of recently predicted topological phases of matter that obey an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topolo...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Higher-order topological insulators1-5 are a family of recently predicted topological phases of matter that obey an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator1, based on quantized quadrupole polarization, was demonstrated in classical mechanical6 and electromagnetic7,8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a 'breathing' kagome lattice9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres2,9,10. Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. |
---|