Molecular design and medicinal applications of nano-nitric oxide delivery systems
Background: Nitric oxide (NO) plays important regulatory roles in a plethora of biological functions and thus holds tremendous potential to be exploited for clinical uses. However, the chemistries in the molecular design of nano-nitric oxide delivery systems is currently lacking. Objective: The over...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138416 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-138416 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1384162020-06-01T10:13:58Z Molecular design and medicinal applications of nano-nitric oxide delivery systems Nguyen, Kim Truc Wu, Zhuoran Huang, Tiantian Tay, Chor Yong School of Materials Science & Engineering School of Biological Sciences Engineering::Materials Nitric Oxide Nano-biomaterials Background: Nitric oxide (NO) plays important regulatory roles in a plethora of biological functions and thus holds tremendous potential to be exploited for clinical uses. However, the chemistries in the molecular design of nano-nitric oxide delivery systems is currently lacking. Objective: The overarching aim of this review is to provide the readers with the fundamentals that relate to the design of NO release molecules (NORMs), loading and releasing mechanism, as well as delivery of NORMs for nanotherapeutics. Methods: We conducted a thorough literature search on the design and synthesis of NORMs, as well as the current state-of-the-art NO compatible delivery platforms to address various clinical needs. Results: N-diazeniumdiolate and S-nitrosothiol based NO molecules are among the most widely used NORMs for anti-cancer and anti-microbial applications. The innovative integration of these NORMs with cytocompatible organic and inorganic nanocarriers enabled controlled spatiotemporal delivery and release of NO at the targeted diseased sites. Conclusion: We have provided a comprehensive summary of the fundamental chemistries underpinning the molecular design of the NORMs and critically assessed the recent advancements of nano-NO delivery systems for advanced biomedical applications. MOE (Min. of Education, S’pore) 2020-05-06T01:53:29Z 2020-05-06T01:53:29Z 2018 Journal Article Nguyen, K. T., Wu, Z., Huang, T., & Tay, C. Y. (2018). Molecular design and medicinal applications of nano-nitric oxide delivery systems. Current Medicinal Chemistry, 25(12), 1420-1432. doi:10.2174/0929867324666170407141222 0929-8673 https://hdl.handle.net/10356/138416 10.2174/0929867324666170407141222 28403790 2-s2.0-85047828702 12 25 1420 1432 en Current Medicinal Chemistry © 2018 Bentham Science Publishers. All rights reserved. This paper was published in Current Medicinal Chemistry and is made available with permission of Bentham Science Publishers. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Materials Nitric Oxide Nano-biomaterials |
spellingShingle |
Engineering::Materials Nitric Oxide Nano-biomaterials Nguyen, Kim Truc Wu, Zhuoran Huang, Tiantian Tay, Chor Yong Molecular design and medicinal applications of nano-nitric oxide delivery systems |
description |
Background: Nitric oxide (NO) plays important regulatory roles in a plethora of biological functions and thus holds tremendous potential to be exploited for clinical uses. However, the chemistries in the molecular design of nano-nitric oxide delivery systems is currently lacking. Objective: The overarching aim of this review is to provide the readers with the fundamentals that relate to the design of NO release molecules (NORMs), loading and releasing mechanism, as well as delivery of NORMs for nanotherapeutics. Methods: We conducted a thorough literature search on the design and synthesis of NORMs, as well as the current state-of-the-art NO compatible delivery platforms to address various clinical needs. Results: N-diazeniumdiolate and S-nitrosothiol based NO molecules are among the most widely used NORMs for anti-cancer and anti-microbial applications. The innovative integration of these NORMs with cytocompatible organic and inorganic nanocarriers enabled controlled spatiotemporal delivery and release of NO at the targeted diseased sites. Conclusion: We have provided a comprehensive summary of the fundamental chemistries underpinning the molecular design of the NORMs and critically assessed the recent advancements of nano-NO delivery systems for advanced biomedical applications. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Nguyen, Kim Truc Wu, Zhuoran Huang, Tiantian Tay, Chor Yong |
format |
Article |
author |
Nguyen, Kim Truc Wu, Zhuoran Huang, Tiantian Tay, Chor Yong |
author_sort |
Nguyen, Kim Truc |
title |
Molecular design and medicinal applications of nano-nitric oxide delivery systems |
title_short |
Molecular design and medicinal applications of nano-nitric oxide delivery systems |
title_full |
Molecular design and medicinal applications of nano-nitric oxide delivery systems |
title_fullStr |
Molecular design and medicinal applications of nano-nitric oxide delivery systems |
title_full_unstemmed |
Molecular design and medicinal applications of nano-nitric oxide delivery systems |
title_sort |
molecular design and medicinal applications of nano-nitric oxide delivery systems |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/138416 |
_version_ |
1681056382045913088 |